The order continuous dual of the regular integral operators on Lp

Автор: Schep Anton R.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 2 т.11, 2009 года.

Бесплатный доступ

In this paper we give two descriptions of the order continuous dual of the Banach lattics of regular integral operators on Lp. The first description is in terms of a Calderon space, while the second one in terms of the ideal generated by the finite rank operators.

Integral operators, order dual, пространства lp., lp-spaces

Короткий адрес: https://sciup.org/14318272

IDR: 14318272

Список литературы The order continuous dual of the regular integral operators on Lp

  • Fremlin D. H. Tensor products of Banach lattices//Math. Ann.-1974.-Vol. 211.-P. 87-106.
  • Schep A. R. Factorization of positive multilinear maps//Illinois J. Math.-1984.-Vol. 28, № 4.-P. 579-591.
  • Schep A. R. Products of Cesaro convergent sequences with applications to convex solid sets and integral operators//Proc. Amer. Math. Soc.-2009.-Vol. 137, № 2.-P. 579-584.
  • Zaanen A. C. Riesz spaces, II (North-Holland Mathematical Library).-Amsterdam: North-Holland Publishing Co., 1983.-Vol. 30.-720 p.
Статья научная