The state of hydrolytic processes in the myocardium and its draining lymphocytes in rats under the effect of doxorubicin under protective trimetazidine premedication

Автор: Frantsiyants Elena М., Surikova Ekaterina I., Kaplieva Irina V., Trepitaki Lidia K., Neskubina Irina V., Shalashnaya Elena V., Bandovkina Valeria A., Kozlova Larisa S., Pogorelova Yulia A., Nemashkalova Lyudmila A., Cheryarina Natalia D., Tavaryan Irina S., Kozyuk Olga V., Rozenko Lyudmila Y., Sakun Pavel G., Trifanov Vladimir S.

Журнал: Cardiometry @cardiometry

Рубрика: Original research

Статья в выпуске: 13, 2018 года.

Бесплатный доступ

Aims The aim hereof is to study the activity of cathepsin D (CatD), alkaline phosphatase (ALP) and acid phosphatase (AP), the antitryptic activity (ATA) of acid-stable inhibitors (ASI) in rats in heart tissue and its draining lymphocytes under introduction of Doxorubicin and protection with Trimetazidine.

Cardiotoxicity, doxorubicin, trimetazidine, cathepsin d, acid phosphatase, alkaline phosphatase

Короткий адрес: https://sciup.org/148308855

IDR: 148308855   |   DOI: 10.12710/cardiometry.2018.13.6674

Список литературы The state of hydrolytic processes in the myocardium and its draining lymphocytes in rats under the effect of doxorubicin under protective trimetazidine premedication

  • Chavez-MacGregor M, Zhang N, Buchholz TA, Zhang Y, Niu J, Elting L et al. Trastuzumab-related cardiotoxicity among older patients with breast cancer. Journal of Clinical Oncology. 2013;31(33):4222-8 DOI: 10.1200/JCO.2013.48.7884
  • Accordino MK, Neugut AI, Hershman DL. Cardiac effects of anticancer therapy in the elderly. Journal of Clinical Oncology. 2014;32(24):2654-61. doi: 10.1200/JCO.2013.55.0459.
  • Han X, Zhou Y, Liu W. Precision cardio-oncology: understanding the cardiotoxicity of cancer therapy. NPJ Precision Oncology. 2017; 1(1):31. doi:10.1038/s41698-017-0034-x
  • Perevodchikova NI. Guide to chemotherapy for neoplastic diseases. 4-th ed. Moscow: Prakticheskaya medicina. 2018.
  • Gendlin GE, Emelina ЕI, NikitinIG, VasyukYuА. Modern view on cardiotoxicity of chemotherapeutics in oncology including аnthracyclines. Russian Journal of Cardiology. 2017; 143(3):145-54. http://dx.doi. org/10.15829/1560-4071-2017-3-145-154.
  • Yandieva RA, Saribekyan EK, Mamedov MN. Cardiotoxicity of cancer therapy. The International Journal of Heart and Vascular Diseases. 2018; 17(6):3-11.
  • Swain S, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869-79 DOI: 10.1002/cncr.11407
  • Mercuro G, Cadeddu C, Piras A, Dessì M, Madeddu C, Deidda M, et al. Early epirubicin-induced myocardial dysfunction revealed by serial tissue dopplerechocar-diography: correlation with inflammatory and oxidative stress markers. Oncologist. 2007;12(9):1124-33 DOI: 10.1634/theoncologist.12-9-1124
  • Kerkhove D, Paciolla I, Arpino G. Classification by Mechanisms of Cardiotoxicity. Anti-Cancer Treatments and Cardiotoxicity. Mechanisms, Diagnostic and Therapeutic Interventions. 2017. https://doi. org/10.1016/B978-0-12-802509-3.00003-0
  • Maurea N, Coppola C, Rienzo A. Changes of Myocardial Structure and Function. Anti-Cancer Treatments and Cardiotoxicity Mechanisms, Diagnostic and Therapeutic Interventions. 2017
  • Dézsi CA. Trimetazidine in Practice: Review of the Clinical and Experimental Evidence. American Journal of Therapeutics. 2016;23(3):e871-879 DOI: 10.1097/MJT.0000000000000180
  • Ogloblina OG. Acid-resistant proteins are inhibitors of mammalian proteinases. Structure, properties, biological role. Biochemistry. 1982; 47(10):1587-1599.
  • Veremeenko KN, Goloborodko AI, Kizim AI. Proteolysis in norm and in pathology. Kiev. 1988.
  • Matyash MG, Kravchuk TL, Vysotskaya VV, Chernov VI, Goldberg VE. Anthracycline-induced cardiotoxicity: mechanisms of development and clinical manifestations. Siberian Journal of Oncology. 2008;30(6):66-75.
  • Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology. 2012; 52(6):1213-1225. doi: 10.1016/j. yjmcc.2012.03.006.
  • Dirks-Naylor AJ. The role of autophagy in doxorubicin-induced cardiotox. Life Sci. 2013; 93(24):913-6
  • Koleini N, Kardami E. Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget. 2017;8(28): 46663-80 DOI: 10.18632/oncotarget.16944
  • Ghosh R, Pattison JS. Macroautophagy and Chaperone-Mediated Autophagy in Heart Failure: The Known and the Unknown. Oxidative Medicine and Cellular Longevity. 2018; DOI: 10.1155/2018/860204
  • Li DL, Wang ZV, Ding G, Tan W, Luo X, Criollo A, et al. Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation. 2016; 133(17):1668-87 DOI: 10.1161/CIRCULATIONAHA.115.017443
  • Bartlett JJ, Trivedi PC, Pulinilkunnil T. Autophagicdysregulation in doxorubicin cardiomyopathy. Journal of Molecular and Cellular Cardiology. 2017; 104:1-8 DOI: 10.1016/j.yjmcc.2017.01.007
  • Gharanei M, Hussain A, Janneh O, Maddock H. Attenuation of doxorubicin-induced cardiotoxicity by mdivi-1: a mitochondrial division/mitophagy inhibitor. PLoS One. 2013; 8(10):e77713 DOI: 10.1371/journal.pone.0077713
  • Dirks-Naylor AJ, Kouzi SA, Bero JD, Phan DT, Taylor HN, Whitt SD, et al. Doxorubicin alters the mitochondrial dynamics machinery and mitophagy in the liver of treated animals. Fundamental & Clinical Pharmacology. 2014; 28(6):633-642. doi: 10.1111/fcp.12073
  • Leto G, Tumminello FМ, Gebbia N, Rausa L. Cathepsin D: A possible biochemical marker for anthracycline cardiomyopathy. Medical science research. 1987; 15(23):1471-2
  • Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K. et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell. 2007; 128(3):589-600. doi: 10.1016/j. Cell.2006.12.036.
  • Benes P, Vetvicka V, Fusek M. Cathepsin D-many functions of one aspartic protease. Critical reviews in oncology/hematology. 2008; 68(1):12-28
  • Masson O, Bach AS, Derocq D, Prébois C, Laurent-Matha V, Pattingre S, Liaudet-Coopman E. Pathophysiological functions of cathepsin D: Targeting its catalytic activity versus its protein binding activity? Biochemistry. 2010; 92(11):1635-43
  • ereira H, Oliveira CS, Castro L, Preto A, Chaves SR, Côrte-Real M. Yeast as a tool to explore cathepsin D function. Microbial Cell. 2015; 2(7):225-34
  • Ollinger K. Inhibition of cathepsin D prevents free-radical-induced apoptosis in rat cardiomyocytes. Archives of Biochemistry and Biophysics. 2000; (373):346-51.
  • Kagedal K., Johansson U., Ollinger K. The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB Journal. 2001;15:1592-4
  • Emert-Sedlak L., Shangary S., Rabinovitz A., Miranda M.B., Delach S.M., Johnson D.E. Involvement of cathepsin D in chemotherapy-induced cytochrome c release, caspase activation, and cell death. Molecular Cancer Therapeutics. 2005;4:733-42
  • Beaujouin M, Baghdiguian S, Glondu-Lassis M, Berchem G, Liaudet-Coopman E. Overexpression of both catalytically active and -inactive cathepsin D by cancer cells enhances apoptosis-dependent chemo-sensitivity. Oncogene. 2006; 25:1967-73
  • Sagulenko V, Muth D, Sagulenko E, Paffhausen T, Schwab M, Westermann F. Cathepsin D protects human neuroblastoma cells from doxorubicin-induced cell death. Carcinogenesis. 2008; 29(10):1869-77
  • Oliveira CS, Pereira H, Alves S, Castro L, Baltazar F, Chaves SR. et al. Cathepsin D protects colorectal cancer cells from acetate-induced apoptosis through autophagy-independent degradation of damaged mitochondria. Cell Death and Disease. 2015; (6):e1788
  • Du F, Wang T, Li S, Meng X, Zhang HY, Li DT. et al. Cathepsin D protects renal tubular cells from damage induced by high glucose independent of its enzymatic activity. American Journal of Translational Research. 2017; 9(12):5528-37.
  • Kaija H, Alatalo SL, Halleen JM, Lindqvist Y, Schneider G, Väänänen HK, Vihko P. Phosphatase and oxygen radical-generating activities of mammalian purple acid phosphatase are functionally independent. Biochemical and Biophysical Research Communications. 2002; 292(1):128-32.
  • Mitić N, Valizadeh M, Leung EW, de Jersey J, Hamilton S, Hume DA. et al. Human tartrate-resistant acid phosphatase becomes an effective ATPase upon proteolytic activation. Archives of Biochemistry and Biophysics. 2005; 439(2):154-64
  • Räisänen SR, Alatalo SL, Ylipahkala H, Halleen JM, Cassady AI, Hume DA, Väänänen HK. Macrophages overexpressing tartrate-resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing. Biochemical and Biophysical Research Communications. 2005; 331(1):120-6.
  • Bozzo GG, Raghothama KG, Plaxton WC. Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersiconesculentum) cell cultures. Biochemical Journal. 2004; 377(2):419-28 DOI: 10.1042/BJ20030947
  • Veljanovski V, Vanderbeld B, Knowles VL, Snedden WA, Plaxton WC. Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived Arabidopsis suspension cells and seedlings. Plant Physiology. 2006; 142(3):1282-93 DOI: 10.1104/pp.106.087171
  • Sharma U, Pal D, Prasad R. Alkaline Phosphatase: An Overview. Indian Journal of Clinical Biochemistry. 2014; 29(3):269-78
  • Haarhaus M, Brandenburg V, Kalantar-Zadeh K, Stenvinkel P, Magnusson P. Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD. Nature Reviews. Nephrology. 2017; 13(7):429-42 DOI: 10.1038/nrneph.2017.60
  • Conus S, Simon HU. Cathepsins and their involvement in immune responses. Swiss Medical Weekly. 2010; 140:w13042 DOI: 10.4414/smw.2010.13042
  • Shujkova KV, Emelina EI, Gendlin GE, Storozhakov GI. Cardiotox. of modern chemotherapeutic drugs. Atmosfera. Novostikardiologii. 2012; 3:9-19.
  • Vasyuk YuA, Shkolnik EL, Nesvetov VV, Shkolnik LD, Varlan GV, Pilshchikov AV. Disorders of myocardial metabolism on the background of chemotherapeutic treatment, as well as the possibility of their correction. Consiliummedicum. Kardiosomatika. 2013; 4(2):11-5.
  • Shchetinin PP. The role of metabolic cardioprotection in the pharmacotherapy of ischemic heart disease.Aktualnye problem gumanitarnyh I estestvennyhnauk. 2015; (8-2):125-9.
  • Dehina L, Vaillant F, Tabib A, Bui-Xuan B, Chevalier P, Dizerens N, et al. Trimetazidine demonstrated cardioprotective effects through mitochondrial pathway in a model of acute coronary ischemia. Naunyn-Schmiedeberg's archives of pharmacology. 2013; 386(3):205-15 DOI: 10.1007/s00210-012-0826-z
  • Salouege I, Ben Ali R, Ben Saïd D, Elkadri N, Kourda N, Lakhal M, Klouz A. Means of evaluation and protection from doxorubicin-induced cardiotoxicity and hepatotoxicity in rats. Journal of Cancer Research and Therapeutics. 2014; 10(2):274-8 DOI: 10.4103/0973-1482.136557
  • Moustafa AM, Shalahy AA. Impact of trimetazidine on doxorubicin-induced acute cardiotoxicity in mice: a biochemical and electron microscopic study. Egyptian Journal of Histology. 2006; 29(1):125-36
Еще
Статья научная