The use of an adaptive mesh based on a quadtree for modeling the final state of a quantum field system under pulsed external action
Автор: Panferov Anatolii Dmitrievich, Makhankov Alexey Vladimirovich, Trunov Alexander Vladimirovich
Журнал: Программные системы: теория и приложения @programmnye-sistemy
Рубрика: Математическое моделирование
Статья в выпуске: 1 (44) т.11, 2020 года.
Бесплатный доступ
The success of using mathematical models that determine the behavior of quantum field systems in parametric spaces critically depends on the level of optimization of the procedure of finding the solution. The paper considers the problem of calculating the density of carriers arising in graphene as a result of the action of a pulsed electric field. The basis of the model is a system of kinetic equations that provide the calculation of the residual distribution function. Its integration over momentum space gives the desired carrier density.The problem lies in the high computational complexity of covering the momentum space with a uniform mesh, which provides an accurate calculation of the density for various parameters of the field momentum. Moreover, the model does not contain criteria for determining satisfactory mesh parameters. The article proposes and implements a procedure for constructing an adaptive mesh in the form of a quadtree having a variable size of covering squares. The procedure is iterative and combined with the process of calculating the values of the distribution function.
Numerical simulation, adaptive mesh, quadtree, graphene
Короткий адрес: https://sciup.org/143170862
IDR: 143170862 | DOI: 10.25209/2079-3316-2020-11-1-93-105
Список литературы The use of an adaptive mesh based on a quadtree for modeling the final state of a quantum field system under pulsed external action
- M.M. Glazov, S.D. Ganichev. “High frequency electric field induced nonlinear effects in graphene”, Physics Reports, 535:3 (2014), pp. 101-138. DOI: 10.1016/j.physrep.2013.10.003
- P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, M. Woerner. “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime”, Phys. Rev. B, 89:4 (2014), 041408. DOI: 10.1103/PhysRevB.89.041408
- M. Baudisch, A. Marini, J.D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L.S. Levitov, F.J. Garcia de Abajo, J. Biegert. “Ultrafast nonlinear optical response of Dirac fermions in graphene”, Nature Communications, 9 (2018), 1018. DOI: 10.1038/s41467-018-03413-7
- Zi-Yu Chen, Rui Gin. “Circularly polarized extreme ultraviolet high harmonic generation in graphene”, Optics Express, 27:3 (2019), pp. 3761-3770. DOI: 10.1364/OE.27.003761
- S.A. Smolyansky, D.V. Churochkin, V.V. Dmitriev, A.D. Panferov, B. Kämpfer. “Residual currents generated from vacuum by an electric field pulse in 2+1 dimensional QED models”, EPJ Web of Conferences, 138 (2017), 06004. DOI: 10.1051/epjconf/201713806004
- A.D. Panferov, S.A. Smolyansky, D.B. Blaschke, N.T. Gevorgyan. “Comparing two different descriptions of the I-V characteristic of graphene: theory and experiment”, EPJ Web of Conferences, 204 (2019), 06008.
- DOI: 10.1051/epjconf/201920406008
- S.A. Smolyansky, A.D. Panferov, D.B. Blaschke, N.T. Gevorgyan. “Nonperturbative kinetic description of electron-hole excitations in graphene in a time dependent electric field of arbitrary polarization”, Particles, 2:2 (2019), pp. 208-230.
- DOI: 10.3390/particles2020015
- A.D. Panferov, A.V. Makhankov. “Simulation of the effect of short optical pulses on graphene”, Program Systems: Theory and Applications, 10:1(40) (2019), pp. 47-58.
- DOI: 10.25209/2079-3316-2019-10-1-47-58
- A.A. Trunov, R.D. Al'-Karavi, T.T. Verevin, N.A. Novikov, A.D. Panferov. “Visualization and analysis of data arrays in modeling the behavior of graphene in an external electric field”, Materialy XVIII Mezhdunarodnoy konferentsii imeni A. F. Terpugova. 1, ITMM-2019 (26-30 iyunya 2019 g., Saratov, Rossiya), Izdatel'stvo NTL, Tomsk, 2019, , pp. 158-162 (in Russian).
- ISBN: 978-5-89503-628-0
- J.S. Schwinger. “On gauge invariance and vacuum polarization”, Phys. Rev., 82:5, 664-679 664-679 (1951).
- DOI: 10.1103/PhysRev.82.664
- V.N. Pervushin, V.V. Skokov. “Kinetic description of fermion production in the oscillator representation”, Acta Phys. Polon. B, 37 (2006, 2587-2600 2587-2600).
- F. Hebenstreit, R. Alkofer, H. Gies. “Pair production beyond the Schwinger formula in time-dependent electric fields”, Phys. Rev. D, 78:6 (2008), 061701.
- DOI: 10.1103/PhysRevD.78.061701
- D.B. Blaschke, B. Kämpfer, S.M. Schmidt, A.D. Panferov, A.V. Prozorkevich, S.A. Smolyansky. “Properties of the electron-positron plasma created from a vacuum in a strong laser field: Quasiparticle excitations”, Phys. Rev. D, 88:4 (2013), 045017.
- DOI: 10.1103/PhysRevD.88.045017
- A.D. Panferov, S.A. Smolyansky, A. Otto, B. Kämpfer, D.B. Blaschke, L. Juchnowski. “Assisted dynamical Schwinger effect: pair production in a pulsed bifrequent field”, Eur. Phys. J. D, 70 (2016), 56.
- DOI: 10.1140/epjd/e2016-60517-y