The use of the MCNP code for radiation damage calculations

Бесплатный доступ

This work gives a detailed analysis of the result of Monte Carlo physics practical using MCNP. This paper describes basic concepts of the Monte Carlo theory of radiation transport calculation and also discusses the variance and the history method as used in Monte Carlo Problem solving. Therefore, in this exercise the MCNP code has been used to solve and estimate the number of neutron flux. The paper investigates the impact of the primary radiation damage in iron by neutron energy irradiation. The established measurement of radiation damage is the displacements per atom (dpa) in matter as a function of neutron energy. The simulations were carried out to calculate the dpa cross section.

Еще

Neutron damage, displacement per atom, nrt, computational algorithms

Короткий адрес: https://sciup.org/149138012

IDR: 149138012   |   DOI: 10.15688/mpcm.jvolsu.2021.1.5

Список литературы The use of the MCNP code for radiation damage calculations

  • Amirkhani M.A., Asadabad M.A., Hassanzadeh M., Mirvakili S.M., Mohammadi A. Calculation of Dpa Rate in Graphite Box of Tehran Research Reactor (TRR). Nuclear Science and Techniques, 2019, vol. 30, no. 6, article ID: 92. DOI: 10.1007/s41365-019-0621-3.
  • Azevedo C. A Review on Neutron-Irradiation-Induced Hardening of Metallic Components. Engineering Failure Analysis, 2011, vol. 18, no. 8, pp. 1921-1942. DOI: 10.1016/j.engfailanal.2011.06.008.
  • Baumgartner A., Burkitt A., Ceperley D., De Raedt H., Ferrenberg A., Heermann D., Herrmann H., Landau D., Levesque D., von der Linden W. The Monte Carlo Method in Condensed Matter Physics. Berlin, Springer Science & Business Media, 2012. 360 p.
  • Brown F.B., Barrett R., Booth T., Bull J., Cox L., Forster R., Goorley T., Mosteller R., Post S., Prael R. MCNP Version 5. Trans Am Nucl Soc, 2002, vol. 87, no. 273, pp. 023935.
  • Feghhi S.A.H., Gholamzadeh Z. A MCNP Simulation Study of Neutronic Calculations of Spallation Targets. Nuclear Technology & Rsdiation Protection, 2013, vol. 28, no. 2, pp. 128136.
  • Forster R.A., Cox L.J., Barrett R.F., Booth T.E., Briesmeister J.F., Brown F.B., Bull J.S., Geisler G.C., Goorley J.T., Mosteller R.D. MCNPTM Version 5. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, vol. 213, pp. 82-86. DOI: 10.1016/S0168-583X(03)01538-6.
  • Hashem J.A. Automating X-Ray and Neutron Imaging Applications with Flexible Automation. UT Electronic Theses and Dissertations. URL: http://hdl.handle.net/2152/33357.
  • Hiwa M., Ari M. Investigation of Long and Short Term Irradiation Hardening of P91 and P92 Ferritic/Martensitic Steels. Voprosy atomnoj nauki i tekhniki. Seriya: Termoyadernyj sintez [Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion], 2019, vol. 42, no. 2, pp. 81-88. DOI: 10.21517/0202-3822-2019-42-2-81-88.
  • Hiwa M. Stopping Power of Alpha Particles in Helium Gas. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana Seriya "Estestvennye nauki" [Herald of the Bauman Moscow State Technical University. Series Natural Sciences], 2020, vol. 89, no. 2, pp. 117-125. DOI: 10.18698/1812-3368-2020-2-117-125.
  • Khadem M.M.R.K., Piya S., Shamsuzzoha A. Quantitative Risk Management in Gas Injection Project: a Case Study from Oman Oil and Gas Industry. Journal of Industrial Engineering International, 2018, vol. 14, no. 3, pp. 637-654. DOI: 10.1007/s40092-017-0237-3.
  • Mahmoud K., Rammah Y. Investigation of Gamma-Ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code. Physica B: Condensed Matter, 2020, vol. 577, article ID: 411756. DOI: 10.1016/j.physb.2019.411756.
  • MCNPTM - A General Monte Carlo N-Particle Transport Code. Version 4C. URL: https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-13709-M.
  • Norgett M., Robinson M., Torrens I. Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation (Designation E 521-96). Annual book of ASTM standards. West Conshohocken, American Society for Testing Materials International, 2009, vol. 12.02, pp. 141-160.
  • Phythian W., Stoller R., Foreman A., Calder A., Bacon D. A Comparison of Displacement Cascades in Copper and Iron by Molecular Dynamics and its Application to Microstructural Evolution. Journal of Nuclear Materials, 1995, vol. 223, no. 3, pp. 245-261. DOI: 10.1016/0022-3115(95)00022-4.
  • Qadr H.M. Calculation for Gamma Ray Buildup Factor for Aluminium, Graphite and Lead. International Journal of Nuclear Energy Science and Technology, 2019, vol. 13, no. 1, pp. 61-69. DOI: 10.1504/IJNEST.2019.099718.
  • Qadr H.M. Comparison of Energy Resolution and Efficiency of NaI (TI) and HPGe Detector Using Gamma-Ray Spectroscopy. Journal of Physical Chemistry and Functional Materials, 2020, vol. 3, no. 1, pp. 24-27.
  • Qadr H.M. Calculation of Gamma-Ray Attenuation Parameters for Aluminium, Iron, Zirconium and Tungsten. Voprosy atomnoj nauki i tekhniki. Seriya: Termoyadernyj sintez [Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion], 2020, vol. 43, no. 2, pp. 25-30. DOI: 10.21517/0202-3822-2020-43-2-25-30.
  • Qadr H. Effect of Ion Irradiation on the Hardness Properties of Zirconium Alloy. Annals of the University of Craiova, Physics, 2019, vol. 29, pp. 68-76.
  • Qadr H. Effect of Ion Irradiation on the Mechanical Properties of High and Low Copper. Atom Indonesia, 2020, vol. 46, no. 1, pp. 47-51. DOI: 10.17146/aij.2020.923.
  • Qadr H.M., Hamad A.M. Mechanical Properties of Ferritic Martenstic Steels: A Review. Scientific Bulletin of Valahia University-Materials and Mechanics, 2019, vol. 17, no. 16, pp. 18-27. DOI: 10.2478/bsmm-2019-0003.
  • Raychaudhuri S. Introduction to Monte Carlo Simulation. Proceedings of the 2008 Winter Simulation Conference. URL: https://www.informs-sim.org/wsc08papers/012.pdf.
  • Sahin H.M. Monte Carlo Calculation of Radiation Damage in First Wall of an Experimental Hybrid Reactor. Annals of Nuclear Energy, 2007, vol. 34, no. 11, pp. 861-870. DOI: 10.1016/j.anucene.2007.04.011.
  • Salazar-Cravioto H., Nieto-Perez M., Ramos G., Mahajan S., Valanju P., Kotschenreuther M. Modeling of a Spherical Tokamak as an Extended Neutron Source Using ASTRA and MCNP. IEEE Transactions on Plasma Science, 2020, vol. 48, iss. 6, pp. 1810-1816. DOI: 10.1109/TPS.2020.2990559.
  • Shultis J., Faw R. An MCNP Primer. URL: https://www.mne.k-state.edu/ jks/MCNPprmr.pdf.
  • Standard Practice for Characterizing Neutron Exposure in Iron and Low Alloy Steels in Terms of Displacements Per Atom (dpa). URL: https://www.astm.org/DATABASE.CART/HISTORICAL/E693-94.htm. DOI: 10.1520/E0693-94.
  • Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation. URL: http://www.astm.org/cgi-bin/resolver.cgi?E521-96(2009)e1. DOI: 10.1520/E0521-96R09E01.
  • Stoller R. 1.11-Primary Radiation Damage Formation. Comprehensive Nuclear Materials, 2012, pp. 293-332.
  • Stoller R., Nordlund K., Simakov S. Summary Report of the Technical Meeting on Primary Radiation Damage: From Nuclear Reaction to Point Defects. International Atomic Energy Agency. URL: https://www.osti.gov/etdeweb/biblio/22069478.
  • Was G.S. Fundamentals of Radiation Materials Science: Metals and Alloys. Berlin, Springer, 2017. 985 p.
Еще
Статья научная