Titchmarsh-Weyl theory of the singular Hahn-Sturm-Liouville equation

Автор: Allahverdiev Bilender P., Tuna Huseyin

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 3 т.23, 2021 года.

Бесплатный доступ

In this work, we will consider the singular Hahn-Sturm-Liouville difference equation defined by -q-1D-ωq-1,q-1Dω,qy(x)+v(x)y(x)=λy(x), x∈(ω0,∞), where λ is a complex parameter, v is a real-valued continuous function at ω0 defined on [ω0,∞). These type equations are obtained when the ordinary derivative in the classical Sturm--Liouville problem is replaced by the ω,q-Hahn difference operator Dω,q. We develop the ω,q-analogue of the classical Titchmarsh-Weyl theory for such equations. In other words, we study the existence of square-integrable solutions of the singular Hahn-Sturm-Liouville equation. Accordingly, first we define an appropriate Hilbert space in terms of Jackson-Norlund integral and then we study families of regular Hahn-Sturm-Liouville problems on [ω0,q-n], n∈N. Then we define a family of circles that converge either to a point or a circle. Thus, we will define the limit-point, limit-circle cases in the Hahn calculus setting by using Titchmarsh's technique.

Еще

Hahn's sturm-liouville equation, limit-circle and limit-point cases, titchmarsh-weyl theory

Короткий адрес: https://sciup.org/143178027

IDR: 143178027   |   DOI: 10.46698/y9113-7002-9720-u

Список литературы Titchmarsh-Weyl theory of the singular Hahn-Sturm-Liouville equation

  • Weyl, H. Über gewohnlicke Differentialgleichungen mit Singuritaten und die zugehörigen Entwicklungen willkürlicher Funktionen, Mathematische Annalen, 1910, vol. 68, no. 2, pp. 220-269. DOI: 10.1007/ BF01474161.
  • Titchmarsh, E. C. Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I, 2nd Edition, Oxford, Clarendon Press, 1962.
  • Levitan, B. M. and Sargsjan, I. S. Sturm-Liouville and Dirac Operators, Mathematics and its Applications (Soviet Series), Dordrecht, Kluwer Academic Publishers Group, 1991. DOI: 10.1007/97894-011-3748-5.
  • Yosida, K. On Titchmarsh-Kodaira's Formula Concerning Weyl-Stone's Eigenfunction Expansion, Nagoya Mathematical Journal, 1950, vol. 1, pp. 49-58. DOI: 10.1017/S0027763000022820.
  • Yosida, K. Lectures on Differential and Integral Equations, New York, Springer, 1960.
  • Levinson, N. A Simplified Proof of the Expansion Theorem for Singular Second Order Linear Differential Equations, Duke Mathematical Journal, 1951, vol. 18, no. 1, pp. 57-71. DOI: 10.1215/S0012-7094-51-01806-6.
  • Hahn, W. Uber Orthogonalpolynome, die q-Differenzengleichungen genugen, Mathematische Nachrichten, 1949, vol. 2, no. 1-2, pp. 4-34. DOI: 10.1002/mana.19490020103.
  • Hahn, W. Ein Beitrag zur Theorie der Orthogonalpolynome, Monatshefte für Mathematik, 1983, vol. 95, no. 1, pp. 19-24. DOI: 10.1007/BF01301144.
  • Jackson, F. H. q-Difference Equations, American Journal of Mathematics, 1910, no. 32, pp. 305-314.
  • Alvarez-Nodarse, R. On Characterizations of Classical Polynomials, Journal of Computational and Applied Mathematics, 2006, vol. 196, no. 1, pp. 320-337. DOI: 10.1016/j.cam.2005.06.046.
  • Dobrogowska, A. and Odzijewicz, A. Second Order q-Difference Equations Solvable by Factorization Method, Journal of Computational and Applied Mathematics, 2006, vol. 193, no. 1, pp. 319-346. DOI: 10.1016/j.cam.2005.06.009.
  • Kwon, K. H, Lee, D. W., Park, S. B. and Yoo, B. H. Hahn Class Orthogonal Polynomials, Kyungpook Mathematical Journal, 1998, vol. 38, pp. 259-281.
  • Lesky, P. A. Eine Charakterisierung der klassischen kontinuierlichen-, diskreten- und q-Orthogonal-polynome, Aachen, Shaker, 2005.
  • Petronilho, J. Generic Formulas for the Values at the Singular Points of Some Special Monic Classical-Orthogonal Polynomials, Journal of Computational and Applied Mathematics, 2007, vol. 205, no. 1, pp. 314-324. DOI: 10.1016/j.cam.2006.05.005.
  • Hamza, A. E. and Ahmed, S. A. Existence and Uniqueness of Solutions of Hahn Difference Equations, Advances in Difference Equations, 2013, vol. 316, no. 1, pp. 1-15. DOI: 10.1186/1687-1847-2013-316.
  • Hamza, A. E. and Ahmed, S. A. Theory of Linear Hahn Difference Equations, Journal of Advances in Mathematics, 2013, vol. 4, no. 2, pp. 440-460.
  • Hamza, A. E. and Makharesh, S. D. Leibnizs Rule and Fubinis Theorem Associated with Hahn Difference Operator, Journal of Advanced Mathematical, 2016, vol. 12, no. 6, pp. 6335-6345. DOI: 10.24297/jam.v12i6.3836.
  • Sitthiwirattham, T. On a Nonlocal Bundary Value Problem for Nonlinear Second-Order Hahn Difference Equation with two Different q, ^-Derivatives, Advances in Difference Equations, 2016, vol. 2016, no. 1, article no. 116. DOI: 10.1186/s13662-016-0842-2.
  • Annaby, M. H, Hamza, A. E. and Makharesh, S. D., A Sturm-Liouville Theory for Hahn Difference Operator, Frontiers of Orthogonal Polynomials and q-Series, Singapore, World Scientific, 2018, pp. 35-84. DOI: 10.1142/9789813228887_0004.
  • Annaby, M. H., Hamza, A. E. and Aldwoah, K. A. Hahn Difference Operator and Associated Jackson-Nörlund Integrals, Journal of Optimization Theory and Applications, 2012, vol. 154, no. 1, pp. 133-153. DOI: 10.1007/s10957-012-9987-7.
  • Knopp, K. Elements of the Theory of Functions, New York, Dover, 1952.
Еще
Статья научная