Точное квадратичное полиномиальное решение для описания неоднородного течения Куэтта–Пуазейля в бесконечном горизонтальном слое с проницаемыми границами

Автор: Кристина Владимировна Губарева, Евгений Юрьевич Просвиряков, Антон Владимирович Еремин

Журнал: Вестник Южно-Уральского государственного университета. Серия: Математика. Механика. Физика @vestnik-susu-mmph

Рубрика: Механика

Статья в выпуске: 1 т.18, 2026 года.

Бесплатный доступ

Исследуется установившееся течение вязкой несжимаемой жидкости в плоском канале с проницаемыми параллельными стенками. В отличие от классических постановок, на верхней границе задаются не только значение скорости, но и её первые два пространственных градиента. Такой подход позволяет моделировать течения с локальной неоднородностью вдоль канала. Нижняя стенка неподвижна и удовлетворяет условию прилипания. Учитывается постоянный градиент давления произвольного знака и равномерный нормальный поток через обе границы. Задача решена аналитически в безразмерной форме, где определяющую роль играют число Рейнольдса, число Рейнольдса на основе скорости проницаемости и безразмерный градиент давления. Проведён асимптотический анализ в предельных случаях слабой и сильной проницаемости. На основе структуры точного решения получена оценка толщины пограничного слоя при инжекции. Результаты подтверждены численным моделированием для реальных жидкостей и демонстрируют переход от вязко-доминированного к конвективно-доминированному режиму течения.

Еще

Течение Куэтта–Пуазейля, проницаемые границы, аналитическое решение, число Рейнольдса, пограничный слой, градиент давления, нормальный поток, неоднородные граничные условия

Короткий адрес: https://sciup.org/147253137

IDR: 147253137   |   УДК: 536.21; 517.958   |   DOI: 10.14529/mmph260106