Topological unified (r,s)-entropy of continuous maps on quasi-metric spaces

Автор: Kazemi Razieh, Miri Mohammad Reza, Mohtashami Borzadaran Gholam Reza

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 4 т.23, 2021 года.

Бесплатный доступ

The category of metric spaces is a subcategory of quasi-metric spaces. It is shown that the entropy of a map when symmetric properties is included is greater or equal to the entropy in the case that the symmetric property of the space is not considered. The topological entropy and Shannon entropy have similar properties such as nonnegativity, subadditivity and conditioning reduces entropy. In other words, topological entropy is supposed as the extension of classical entropy in dynamical systems. In the recent decade, different extensions of Shannon entropy have been introduced. One of them which generalizes many classical entropies is unified (r,s)-entropy. In this paper, we extend the notion of unified (r,s)-entropy for the continuous maps of a quasi-metric space via spanning and separated sets. Moreover, we survey unified (r,s)-entropy of a map for two metric spaces that are associated with a given quasi-metric space and compare unified (r,s)-entropy of a map of a given quasi-metric space and the maps of its associated metric spaces. Finally we define Tsallis topological entropy for the continuous map on a quasi-metric space via Bowen's definition and analyze some properties such as chain rule.

Еще

Topological entropy, tsallis entropy, tsallis topological entropy, quasi-metric spaces

Короткий адрес: https://sciup.org/143178034

IDR: 143178034   |   DOI: 10.46698/p8176-1984-8872-z

Список литературы Topological unified (r,s)-entropy of continuous maps on quasi-metric spaces

  • Shannon, C. E. A Mathematical Theory of Communication, ACM SIGMOBILE Mobile Computing and Communications Review, 2001, no. 1, pp. 3-55. DOI: 10.2307/3611062.
  • Renyi, A. On Measures of Entropy and Information, Hungarian Academy of Sciences, Budapest, Hungary, 1961.
  • Tsallis, C. Possible Generalization of Boltzmann-Gibbs Statistics, Journal of Statistical Physics, 1988, vol. 52, no. 1-2, pp. 479-487. DOI: 10.1007/BF01016429.
  • Rathie, P. N. and Taneja, I. J. Unified $(r, s)$-Entropy and its Bivariate Measures, Information Sciences, 1991, vol. 54, no. 1-2, pp. 23-39. DOI:10.1016/0020-0255(91)90043-T.
  • Rastegin, A. E. Some General Properties of Unified Entropies, Journal of Statistical Physics, 2011, vol. 143, no. 6, no. 1120-1135. DOI: 10.1007/s10955-011-0231-x.
  • Rastegin, A. E. On Unified-Entropy Characterization of Quantum Channels, Journal of Physics A: Mathematical and Theoretical, 2011, vol. 45, no. 4, pp. 45302. DOI: 10.1088/1751-8113/45/4/045302.
  • Kolmogorov, A. N. A New Metric Invariant of Transient Dynamical Systems and Automorphisms in Lebesgue Spaces, Dokl. Akad. Nauk SSSR, 1958, vol. 119, no. 5, pp. 861-864.
  • Sinai, Y. G. On the Notion of Entropy of a Dynamical System, Doklady of Russian Academy of Sciences, 1959, vol. 124, no. 3, pp. 768-771.
  • Adle, R., Konheim, A. and McAndrew, M. H. Topological Entropy, Transactions of the American Mathematical Society, 1965, vol. 114, no. 2, pp. 309-319. DOI: 10.1090/S0002-9947-1965-0175106-9.
  • Bowen, R. Entropy for Group Endomorphisms and Homogeneous Spaces, Transactions of the American Mathematical Society, 1971, vol. 153, pp. 401-414. DOI: 10.1090/S0002-9947-1971-0274707-X.
  • Dinaburg, E. I. A Correlation Between Topological Entropy and Metric Entropy. Dokl. Akad. Nauk SSSR, 1970, vol. 190, no. 1, pp. 19-22.
  • Kazemi, R. Miri, M. R., and Mohtashami Borzadaran G. M., Topological Unified (r,s)-Entropy. Physica A: Statistical Mechanics and its Applications, 2020, vol. 541, Article 123657. DOI: 10.1016/j.physa.2019.123657.
  • Stolenberg, R. A. A Completion for a Quasi Uniform Space, Proc. Amer. Math. Soc., 1967, vol. 18, pp. 864-867. DOI: 10.1090/S0002-9939-1967-0215282-X.
  • Stoltenberg, R. A. On Quasi-Metric Spaces, Duke Math. J., 1969, vol. 36, pp. 65-71. DOI: 10.1215/S0012-7094-69-03610-2.
  • Sayyari, Y., Molaei, M. and Moghayer, S. M. Entropy of Continuous Maps on Quasi-Metric Spaces, Journal of Advanced Research in Dynamical and Control Systems, 2015, vol. 7, no. 4, pp. 1-10.
  • Havrda, J. and Charvat, F. Quantification Method of Classification Processes. Concept of Structural a-Entropy, Kybernetika, 1967, vol. 3, no. 1, pp. 30-35.
  • Sharma, B. D. and Mittal, D. P. New non-Additive Measures of Entropy for 280 Discrete Probability Distributions, J. Math. Sci., 1975, vol. 10, pp. 28-40. DOI: 10.6092/issn.1973-2201/6621.
Еще
Статья научная