Torsion of prismatic orthotropic elastoplastic rods
Автор: Burenin A. A., Senashov S. I., Savostyanova I. L.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Informatics, computer technology and management
Статья в выпуске: 1 vol.22, 2021 года.
Бесплатный доступ
Conservation laws were introduced into the theory of differential equations by E. Noether more than 100 years ago and are gradually becoming an important tool for the study of differential equations systems. Not only do they allow you to qualitatively investigate the equation, but, as the authors of this article show, they also enable you to find exact solutions to the boundary value problems. For the equations of the iso-tropic theory of elasticity, the conservation laws were first calculated by P. Olver. For the equations of the theory of plasticity in the two-dimensional case, the conservation laws were found by one of the authors of this article and used to solve the main boundary value problems of the plasticity equations. Later it turned out that the conservation laws can also be used to find the boundaries between elastic and plastic zones in twisted rods, bent beams, and deformable plates. The proposed work found conservation laws for equations describing the orthotropic elastic state of the twisted straight-line rod. It is assumed that the remaining current depends linearly on the voltage tensor component. In the workit was also found an endless series of laws of preservation, which allows you to find an elastic-plastic boundary, which arises when twisting the orthotropic rod.
Torsion of rods, boundary value problems, conservation laws
Короткий адрес: https://sciup.org/148321782
IDR: 148321782 | DOI: 10.31772/2712-8970-2021-22-1-8-17
Список литературы Torsion of prismatic orthotropic elastoplastic rods
- Kiryakov P. P., Senashov S. I., Yakhno A. N. Prilozhenie simmetrij i zakonov sohraneniya k resheniyu differencial'nyh uravneniy [Application of symmetries and conservation laws to the solution of differential equations]. Novosibirsk; Nauka Publ., 2001, 192 p.
- Senashov S. I., Vinogradov A. M. Symmetries and conservation laws of 2-dimensional ideal plasticity Proc. Edinburgh Math. Soc. 1988, P. 415–439.
- Vinogradov A. M., Krasilshchik I. S., Lychagin V. V. Simmetrii i zakony sohraneniya [Symmetries and conservation laws]. Moscow, Factorial Publ., 1996, 380 p.
- Annin B. D., Bytev V. O., Senashov S. I. Gruppovye svojstva uravnenij uprugosti i plastichnosti [Group properties of equations of elasticity and plasticity]. Novosibirsk, Nauka Publ., 1983, 239 p.
- Senashov S. I., Gomonova O. V., Yakhno A. N. Matematicheskie voprosy dvumernyh uravnenij ideal'noj plastichnosti [Mathematical problems of two-dimensional equations of ideal plasticity]. Krasnoyarsk, 2012, 139 p.
- Senashov S. I., Vinogradov A. M. Symmetries and conservation laws of 2-dimensional ideal plasticity Proc. Edinburg Math.Soc. 1988, P. 415–439.
- Olver P. Conservation laws in elasticity 1. General result. Arch. Rat. Mech. Anal. 1984, No. 85, P. 111–129.
- Olver P. Conservation laws in elasticity 11. Linear homogeneous isotropic elastostatic. Arch. Rat. Mech. Anal. 1984, No. 85, P. 131–160.
- Senashov S. I., Savostyanova I. L. Elastic state of a plate with holes of arbitrary shape Vestnik CHuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. YA. Yakovleva. Seriya: Mekhanika predel'nogo sostoyaniya. 2016. No. 3 (29), P. 128–134 (In Russ.).
- Senashov S. I., Kondrin A. V. Development of an information system for finding the elastic-plastic boundary of rolling profile rods. Vestnik SibGAU. 2014, No. 4(56), P. 119–125 (In Russ.).
- Senashov S. I., Filyushina E. V., Gomonova O. V. Construction of elastic-plastic boundaries with the help of conservation laws. Vestnik SibGAU. 2015, Vol. 16, No. 2, P. 343–359 (In Russ.).
- Senashov S. I., Cherepanova O. N., Kondrin A.V. On elastic-plastic torsion of the rod Vestnik SibGAU. 2013, Vol. 3(49), P. 100–103 (In Russ.).
- Senashov S. I., Cherepanova O. N., Kondrin A.V. Elastoplastic Bending of Beam. J. Siberian Federal Univ., Math. & Physics. 2014, No. 7(2), P. 203–208.
- Senashov S. I., Cherepanova O. N., Kondrin A.V. On Elastoplastic Torsion of a Rod with Multiply Connected Cross-Section J. Siberian Federal Univ., Math. & Physics. 2015, No. 7(1), P. 343–351.
- Senashov S. I., Gomonova O. V. Construction of elastoplastic boundary in problem of tension of a plate weakened by holes International Journal of Non-Linear Mechanics. 2019, Vol. 108, P. 7–10.
- Lekhnitsky S. G. Teoriya uprugosti anizotropnogo tela [Theory of elasticity of an anisotropic body]. Moscow, Nauka Publ., 1977, 416 p.