Transition metal and non-metal co-doping graphene for oxygen reduction reaction electrocatalysis: a density functional theory study
Автор: Chen Fengxiang, Yang Lei
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Технические науки
Статья в выпуске: 2 т.7, 2021 года.
Бесплатный доступ
Proton exchange membrane fuel cells (PEMFCs) are vital energy-conversion devices in a hydrogen-fueled economic. In this study, we performed density functional theory (DFT) calculations to study 4e- oxygen reduction reaction process on transition metal embedded in single and double vacancies (SV and DV) in a graphene. We calculated bonding energy and adsorption energy on CoX3 (X = B, C, N, Si, P and S) and CoX4 (X = B, C, N, Si, P and S) embedded in graphene. Our DFT results indicate that formation of CoX3 is unfeasible and the formation of CoX4 is feasible. In addition, the crucial role of ligand atoms near embedded metal atoms is revealed via the molecular orbital theory. Then the Gibbs free energy of CoX4 are calculated and the CoN4, CoS4, and CoP4 are predicted to be active for catalyzing ORR, and these also show ligand atoms’ coordination effect for catalytic activity of central metal. Furthermore, we observed that they have identical rate-determining step (RDS). This work can provide some references for transition atoms catalytic doped in carbon materials.
Oxygen reduction reaction, density functional theory, coordination effect
Короткий адрес: https://sciup.org/14120902
IDR: 14120902 | DOI: 10.33619/2414-2948/63/18
Список литературы Transition metal and non-metal co-doping graphene for oxygen reduction reaction electrocatalysis: a density functional theory study
- Nørskov J. K., Rossmeisl J., Logadottir A., Lindqvist L. R. K. J., Kitchin J. R., Bligaard T., Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode // The Journal of Physical Chemistry B. 2004. V. 108. №46. P. 17886-17892. DOI: 10.1021/jp047349j
- Chen Z. W., Chen L. X., Yang C. C., Jiang Q. Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges // Journal of Materials Chemistry A. 2019. V. 7. №8. P. 3492-3515. DOI: 10.1039/C8TA11416A
- Hammer B., Nørskov J. K. Theoretical surface science and catalysis - calculations and concepts // Advances in catalysis. 2000. V. 45. P. 71-129. DOI: 10.1016/S0360-0564(02)45013-4
- Calle-Vallejo F., Martínez J. I., Rossmeisl J. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions // Physical Chemistry Chemical Physics. 2011. V. 13. №34. P. 15639-15643. DOI: 10.1039/C1CP21228A
- Choi W. I., Wood B. C., Schwegler E., Ogitsu T. Combinatorial Search for high-activity hydrogen catalysts based on transition-metal-embedded graphitic carbons // Advanced Energy Materials. 2015. V. 5. №23. P. 1501423. DOI: 10.1002/aenm.201501423