Transition of nanoparticles Fе3O4 and Al in a simplified aquatic food chain
Автор: Agayeva Nargiz
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Биологические науки
Статья в выпуске: 11 т.5, 2019 года.
Бесплатный доступ
This article presents the results of experiments on the transitions of Fe3O4 nanoparticles (20-30 nm) and Al (18 nm) from one organism to another, making up a simple food chain (plant-mollusk-fish). In experiments, mollusks (Melonopsis praemorsa) feed on the leaves of plant ( Elodea canadensis ) after being contaminated with Al or Fe3O4 nanoparticles. Nanoparticles were detected using TEM analysis in the cells of the mollusk’s organs. Then the fish (Oncorhynchus mykiss) were fed with mollusks. The distribution and localization of nanoparticles in fish organs has been determined. Experimental results showed that nanoparticles can pass from one organism to another in the food chain. Nanoparticles accumulate mainly in the liver of mollusks and fish.
Nanoparticles, food chain, cells, organoids, distribution of nanoparticles
Короткий адрес: https://sciup.org/14115147
IDR: 14115147 | DOI: 10.33619/2414-2948/48/07
Список литературы Transition of nanoparticles Fе3O4 and Al in a simplified aquatic food chain
- Nowack B., Bucheli T. D. Occurrence, behavior and effects of nanoparticles in the environment // Environmental pollution. 2007. V. 150. №1. P. 5-22. DOI: 10.1016/j.envpol.2007.06.006
- Handy R. D., Shaw B. J. Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology // Health, Risk & Society. 2007. V. 9. №2. P. 125-144. DOI: 10.1080/13698570701306807
- Ju-Nam Y., Lead J. R. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications // Science of the total environment. 2008. V. 400. №1-3. P. 396-414. DOI: 10.1016/j.scitotenv.2008.06.042
- McTeer J., Dean A. P., White K. N., Pittman J. K. Bioaccumulation of silver nanoparticles into Daphnia magna from a freshwater algal diet and the impact of phosphate availability // Nanotoxicology. 2014. V. 8. №3. P. 305-316. DOI: 10.3109/17435390.2013.778346
- Labille J., Brant J. Stability of nanoparticles in water // Nanomedicine. 2010. V. 5. №6. P. 985-998. DOI: 10.2217/nnm.10.62
- Peralta-Videa J. R., Zhao L., Lopez-Moreno M. L., de la Rosa G., Hong J., Gardea-Torresdey J. L. Nanomaterials and the environment: a review for the biennium 2008-2010 // Journal of hazardous materials. 2011. V. 186. №1. P. 1-15.
- DOI: 10.1016/j.jhazmat.2010.11.020
- Kahru A., Dubourguier H. C. From ecoToxicology to nanoecoToxicology // Toxicology. 2010. V. 269. №2-3. P. 105-119.
- DOI: 10.1016/j.tox.2009.08.016
- Ju-Nam Y., Lead J. R. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications // Science of the total environment. 2008. V. 400. №1-3. P. 396-414.
- DOI: 10.1016/j.scitotenv.2008.06.042
- Rico C. M., Majumdar S., Duarte-Gardea M., Peralta-Videa J. R., Gardea-Torresdey J. L. Interaction of nanoparticles with edible plants and their possible implications in the food chain // Journal of agricultural and food chemistry. 2011. V. 59. №8. P. 3485-3498.
- DOI: 10.1021/jf104517j
- Darlington T. K., Neigh A. M., Spencer M. T., Guyen O. T., Oldenburg S. J. Nanoparticle characteristics affecting environmental fate and transport through soil // Environmental Toxicology and Chemistry: An International Journal. 2009. V. 28. №6. P. 1191-1199.
- DOI: 10.1897/08-341.1
- Blinova I., Ivask A., Heinlaan M., Mortimer M., Kahru A. Ecotoxicity of nanoparticles of CuO and ZnO in natural water // Environmental Pollution. 2010. V. 158. №1. P. 41-47.
- DOI: 10.1016/j.envpol.2009.08.017
- Mousavi S. M., Hashemi S. A., Esmaeili H., Amani A. M., Mojoudi F. Synthesis of Fe3O4 nanoparticles modified by oak shell for treatment of wastewater containing Ni (II) // Acta Chimica Slovenica. 2018. V. 65. №3. P. 750-756.
- DOI: 10.17344/acsi.2018.4536
- Handy R. D., Galloway T. S., Depledge M. H. A proposal for the use of biomarkers for the assessment of chronic pollution and in regulatory toxicology // Ecotoxicology. 2003. V. 12. №1-4. P. 331-343. https://doi.org/10.1023/A:1022527432252
- Roco M. C. Nanotechnology: convergence with modern biology and medicine // Current opinion in biotechnology. 2003. V. 14. №3. P. 337-346.
- DOI: 10.1016/S0958-1669(03)00068-5
- Namiki N. et al. Tubular reactor synthesis of doped nanostructured titanium dioxide and its enhanced activation by coronas and soft X-rays // Industrial & engineering chemistry research. 2005. V. 44. №14. P. 5213-5220.
- DOI: 10.1080/10473289.2005.10464656
- Ahmadov I. S., Gasimov E., Sadiqova N., Agayeva N., Rzayev F., Manafov A. Transfer of nanoparticles in a simplified aquatic food chain: from water plant Elodea canadensis to Molluscs Lymnaea auricularia // Dimensional systems. 2018. V. 2. P. 36-40.
- Gambardella C., Gallus L., Gatti A. M., Faimali M., Carbone S., Antisari L. V., Ferrando S.et al. Toxicity and transfer of metal oxide nanoparticles from microalgae to sea urchin larvae // Chemistry and Ecology. 2014. V. 30. №4. P. 308-316.
- DOI: 10.1080/02757540.2013.873031
- Huber D. L. Synthesis, properties, and applications of iron nanoparticles // Small. 2005. V. 1. №5. P. 482-501.
- DOI: 10.1002/smll.200500006