Транспортировка масс и сжимающие отображения

Автор: Колесников А.В.

Журнал: Труды Московского физико-технического института @trudy-mipt

Статья в выпуске: 4 (8) т.2, 2010 года.

Бесплатный доступ

Согласно известному результату Л. Каффарелли, оптимальная транспортировка стандарт- ной гауссовской меры в логарифмически вогнутую меру является 1-липшицевым отображением. Настоящая работа представляет собой краткий обзор различных результатов и приложений, полученных в этом направлении

Короткий адрес: https://sciup.org/142185707

IDR: 142185707

Список литературы Транспортировка масс и сжимающие отображения

  • Богачев В.И. Гауссовские меры. -М.: Наука, 1997.
  • Bakry D., Ledoux M. Lґevy-Gromovs isoperimetric inequality for an infinite dimensional diffusion generator//Invent. Math. -2005. -V. 123(1). -P. 259-281.
  • Barthe F. On a reverse form of the Brascamp-Lieb inequality//Invent. Math. -1998. -V. 2. -P. 335-361.
  • Barthe F., Kolesnikov A.V. Mass transport and variants of the logarithmic Sobolev inequality//Journal. Geom. Analysis. -2008. -V. 18(4) -P. 921-979.
  • Bobkov S. On isoperimetric constants for log-concave probability distributions. In Geometric aspects of functional analysis//Israel Seminar 2004-2005, volume 1910 of Lecture Notes in Math. -P. 81-88.
  • Caffarelli L.A. Monotonicity properties of optimal transportation and the FKG and related inequalities//Comm. Math. Phys. -2000. -V. 214(3) -P. 547-563.
  • Cordero-Erausquin D., Fradelizi M., Maurey B. The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems//J. Funct. Anal. -2004. -V. 214. -P. 410-427.
  • Cordero-Erausquin D. Some applications of mass transport to Gaussian type inequalities//Arch. Rational Mech. Anal. -2002. -V. 161. -P. 257-269.
  • Gromov M. Metric structure for Riemannian and non-Riemannian spaces//BirkhЁauser-Boston, 1998. -V. 152.
  • Hargґe G. A particular case of correlation inequality for the Gaussian measure//Ann. Probab. -1999. -V. 27. -P. 1939-1951.
  • Hargґe G. A convex/log-concave correlation inequality for Gaussian measure and an application to abstract Wiener spaces//Probab. Theory Related Fields. -2004. -V. 13, N. 3 -P. 415-440
  • Kannan R., Lov`asz L., Simonovits S. Isoperimetric problems for convex bodies and a localization lemma//Discrete Comput. Geom. -1995. -V. 13(3-4) -P. 541-559.
  • Kim Y.-H., Milman E. A Generalization of Caffarellis Contraction Theorem via (reverse) Heat Flow. -arXiv:1002.0373.
  • Kolesnikov A.V. On diffusion semigroups preserving the log-concavity//J. Funct. Anal. -2001. -V. 186.
  • Kolesnikov A.V. On global HЁolder estimates of optimal transportation. -arXiv: 0810.5043.
  • Kolesnikov A.V. On Sobolev regularity of mass transport and transportation inequalities. -arXiv:1007.1103.
  • Kolesnikov A.V., Zhdanov R.I. On isoperimetric sets of radially symmetric measures. -arXiv:1002.1829.
  • Ledoux M. The concentration of measure phenomenon. Mathematical Surveys and Monographs 89//Amer. Math. Soc. -2001.
  • McCann R.J. A convexity principle for interacting gases//Adv. Math. -1997. -V. 128. -P. 153-179.
  • Maurmann Q., Morgan F. Isoperimetric comparison theorems for manifolds with density//Calculus of Variations and Partial Differential Equations -2009. -V. 36, N. 1. -P. 1-5.
  • Milman E. On the role of Convexity in Functional and Isoperimetric Inequalities//Proc. London Math. Soc. -2009. -V. 99 (3) -P. 32-66.
  • Milman V., Schechtman G. Asymptotic theory of finite dimensional normed vector spaces. Lect Notes in Math.//Springer. -1986.
  • Milman E., Sodin S. An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies//Jour. Funct. Anal. -2008. -V. 254(5). -P. 1235-1268.
  • Ros A. The isoperimetric problem. Lecture at Clay Mathematical Institute on the Global Theory of Minimal Surfaces. -2001.
  • Rosales C., Ca nete A., Bayle V., Morgan F. On the isoperimetric problem in Euclidean space with density//Calc. -2007. -V. 31. -P. 27-46.
  • Valdimarsson S.I. On the Hessian of optimal transport potential//Ann. Sc. Norm. Sup. Pisa Cl Sci. -2007. -V. 6(3) -P. 441-456.
  • Villani C. Topics in Optimal Transportation//Amer. Math. Soc. Providence. -Rhode Island, 2003.
Еще
Статья научная