Ultrasound treatment: effect on germinating barley
Автор: Kretova Yu.I., Avdeeva L.A., Annapure U.Sh.
Рубрика: Пищевые ингредиенты, сырье и материалы
Статья в выпуске: 2 т.11, 2023 года.
Бесплатный доступ
We investigated the way ultrasound exposure enhances the germinating of barley for brewing as germination is a major issue for the brewing industry. The rate of germinating of ultrasound-exposed grains were compared to those of non-exposed ones that germinated under normal conditions. Optimum parameters of treatment were obtained by two-factor analysis, with regard to post-storage initial state of the grains. Power and duration of ultrasonic exposure varied between 360 and 630 W, 1 and 5 minutes, respectively. The research found 9-10 % increase in germinating capacity of the treated grains versus germinating capacity of the non-treated ones. Heating power of 360 W and treatment duration of 5 minutes proved to have the strongest effect on the increase of the germinative ability. The aim of the study was to find the optimum non-conditions of ultrasound treatment to enhance the germination of conditioned barley for brewing. The method offers an opportunity to monitor the process the process and control the nature of metabolic processes in germinating grains.
Ultrasonic exposure, barley, malt, rate of germinating, germinative ability
Короткий адрес: https://sciup.org/147240827
IDR: 147240827 | DOI: 10.14529/food230203
Список литературы Ultrasound treatment: effect on germinating barley
- Bennell M.R., Verbyla A.P. Quantifying the response of crops to shelter in the agricultural regions of South Australia. Australian Journal of Agricultural Research, 2008, vol. 59, pp. 950-957. DOI: 10.1071/AR08188
- Carstensen E.L. Biological effects of low-temporal, average-intensity, pulsed ultrasound. Bioelectromagnetics, 1982, vol. 3, pp. 147-156. DOI: 10.1002/bem.2250030118
- Chandrapala J., Oliver C., Kentish S., Ashokkumar M. Ultrasonics in food processing. Ultrasonics Sonochemistry, 2012. vol. 19, pp. 975-983. DOI: 10.1016/j.tifs.2012.01.010
- Kastal'eva T.B., Bogoutdinov D.Z., Bottner-Parker K.D., Girsova N.V., Lee I.M. Diverse phytoplasmas associated with diseases in various crops in Russia - Pathogens and vectors. Sel'skokhozyaistvennayaBiologiya, 2016. vol. 51, pp. 367-375. DOI: 10.15389/agrobiology.2016.3.367eng
- Knorr D., Zenker M., Heinz V., Lee D.U. Applications and potential of ultrasonics in food processing. Trends in Food Science and Technology, 2004. vol. 15, pp. 261-266. DOI: 10.1016/j.tifs.2003.12.001
- Los A., Akkermans S., Boehm D., Cullen P.J., Van Impe J., Bourke P. Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Research International, 2018. vol. 106, pp. 509-521. DOI: 10.1016/j.foodres.2018.01.009
- Patero T., Augusto P. Ultrasound (US) enhances the hydration of sorghum (Sorghum bicolor) grains. Ultrasonics Sonochemistry, 2015. vol. 23, pp. 11-15. DOI:10.1016/j.ultsonch.2014.10.021
- Rajewska K., Mierzwa D. Influence of ultrasound on the microstructure of plant tissue. Innovative Food Science and Emerging Technologies, 2017. vol. 43, pp. 117-129. DOI: 10.1016/j.ifset.2017.07.034
- Sabagh E.A., Hossain A., Islam M.S., Barutcular C., Hussain S., Hasanuzzaman M., Akram T., Mubeen M., Nasim W., Fahad S., Kumar N., Meena R.S., Kizilge?i F., Yildirim M., Ratnasekera D., Saneoka H. Drought and salinity stresses in barley: Consequences and mitigation strategies. Australian Journal of Crop Science, 2019. vol. 13, pp. 810-820. DOI: 10.21475/ajcs.19.13.06.p1286
- Schils R., Olesen J., Kersebaum K., Rijk B. and other. Cereal yield gaps across Europe. European Journal of Agronomy, 2018. vol. 101, pp. 109-120. D0I:10.1016/j.eja.2018.09.003
- Sharififar A., Nazari M., Asghari H. Effect of ultrasonic waves on seed germination of Atriplex lentiformis, Cuminum cyminum, and Zygophyllum eurypterum. Journal of Applied Research on Medicinal and Aromatic Plants, 2015. vol. 2, pp. 102-104. DOI: 10.1016/j.jarmap.2015.05.003
- Shestakov S. New technologies for the production of high-quality foodstuffs. Ind. Bull, 2005. vol. 6, pp. 4-7 (In Russ.). URL: https://www.promved.ru/articles
- Toropova E., Kirichenko A., Stetsov G., Suhomlinov V. Soil infections of grain crops with the use of the resource-saving technologies in western Siberia. Biosciences Biotechnology Research, 2015. vol. 12, pp. 1081-1093. DOI: 10.13005/bbra/1761
- Ullrich S., Clancy J., Del Blanco I., Lee H. Jitkov V. Genetic analysis of preharvest sprouting in a six-row barley cross. Molecular Breeding, 2008. vol. 21, pp. 249-259. DOI: 10.1007/s11032-007-9125-7
- Wilson S., Atungulu G., Olatunde G. Drying and decontamination of corn using a pilot-scale continuous-flow radiant heating system. American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE 201620162016 ASABE Annual International Meeting; Disney's Coronado Springs Resort Orlando; United States, 2016. 17 July 2016 - 20 July 2016. DOI: 10.13031/ aim.20162460256
- Woonton B., Jacobsen J., Sherkat F., Stuart I. Changes in germination and malting quality during storage of barley. Journal of the Institute of Brewing, 2005. vol. 111, pp. 33-41. URL: https://www.researchgate.net/publication
- Yaldagard М., Mortazavi S., Tabatabaie F. Application of ultrasonic waves as a priming technique for accelerating and enhancing the germination of barley seed: optimization of method by the Taguchi approach Journal of the Institute of Brewing, 2008. vol. 114, pp. 14-21. https://doi.org/10.3136/fstr.25.489
- Yang S., Huang Y. The activation of growth in plant roots by ultrasound exposure. Biomedical Engineering - Applications, Basis and Communications, 2000. vol. 12, pp. 148-154. https://www.research-gate.net/publication/287458553_The_activation_of__growth_in_plant_roots_by_ultrasound_exposure