Unsolved nonstandard problems

Автор: Kusraev A.G., Kutateladze S.S.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 2 т.2, 2000 года.

Бесплатный доступ

In the fall of 1990 a small colloquium on nonstandard analysis was arranged at the request of a group of graduate and postgraduate students of Novosibirsk State University. At the meetings many unsolved problems were formulated stemming from various branches of analysis and seemingly deserving attention of the novices of nonstandard analysis. In 1994 some discussion took place on combining nonstandard methods at the international conference "Interaction Between Functional Analysis, Harmonic Analysis and Probability" (Missouri University, Columbia USA). The same topics were submitted to the international conference "Analysis and Logic" held in Belgium in 1997. In 1998 an INTAS research project was submitted. The problems raised in the framework of these projects are the core of this article. The list of the problems contains not only simple questions for drill but also topics for serious research intended mostly at the graduate and post graduate level. Some problems need creative thought to clarify and specify them.

Еще

Короткий адрес: https://sciup.org/14318004

IDR: 14318004

Список литературы Unsolved nonstandard problems

  • Albeverio S., Fenstad J. E., Hoegh-Krohn R., Lindstrom T. Nonstandard Methods in Stochastic Analysis and Mathematical Physics.-New York a.o.: Academic Press, 1986.
  • Albeverio S., Gordon E. I., and Khrennikov A. Yu. Finite dimensional approximations of operators in the Hilbert spaces of functions on locally compact abelian groups//Acta Appl. Math.-2000.-V. 64, № 1.-P. 33-73.
  • Arkeryd L. and Bergh J. Some properties of Loeb-Sobolev spaces//J. London Math. Soc.-1986.-V. 34, № 2.-P. 317-334.
  • Bishop E. and Bridges D. Constructive Analysis.-Berlin etc.: Springer, 1985.
  • Burden C. W. and Mulvey C. J. Banach spaces in categories of sheaves//Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977).-Berlin: Springer, 1979.
  • Castaing C. and Valadier M. Convex Analysis and Measurable Multifunctions. Berlin etc.: Springer, 1977. (Lectures Notes in Math.-V. 580).-278 p.
  • Cutland N. (ed.) Nonstandard Analysis and Its Applications.-Cambridge: Cambridge Univ. Press, 1988.
  • Dellacherie C. Capacities and Stochastic Processes [Russian translation].-Moscow: Mir, 1972.
  • Diestel J. Geometry of Banach Spaces -Selected Topics.-Berlin etc.: Springer, 1975.
  • Diestel J. and Uhl J. J. Vector measures. Providence, RI: Amer. Math. Soc., 1977 (Math. Surveys; (15).
  • Ekeland I. and Temam R. Convex Analysis and Variational Problems.-Amsterdam: North-Holland, 1976; Moscow: Mir, 1979.
  • Emel'yanov E. Yu. Invariant homomorphisms of nonstandard enlargements of Boolean algebras and vector lattices//Sibirsk. Mat. Zh.-1997.-V. 38, № 2.-P. 286-296.
  • Fourman M. P., Mulvey C. J., and Scott D. S. (eds.). Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977).-Berlin: Springer, 1979.
  • Fourman M. P. and Scott D. S. Sheaves and logic//Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977).-Berlin: Springer, 1979.-P. 302-401.
  • Fourman M. P. The logic of toposes//In: Handbook of Mathematical Logic. Amsterdam: North-Holland, 1977.
  • Gol'dshtein V. M., Kuz'minov V. I., and Shvedov I. A. The Kunneth formula for L_p-cohomologies of wrapped products//Sibirsk. Mat. Zh.-1991.-V. 32, № 5.-P. 29-42.
  • Gol'dshtein V. M., Kuz'minov V. I., and Shvedov I. A. On approximation of exaxt and closed differential forms by compactly-supported forma//Sibirsk. Mat. Zh.-1992.-V. 33, № 2.-P. 49-65.
  • Goldblatt R. Toposes. Categorical Analysis of Logic. Amsterdam etc.: North-Holland, 1979.-488 p.
  • Gordon E. I. Nonstandard finite-dimensional analogs of operators in L_2(\Bbb R^n)//Sibirsk. Mat. Zh.-1988.-V. 29, № 2.-P. 45-59.
  • Gordon E. I. Relatively nonstandard elements in E. Nelson's internal set theory//Sibirsk. Mat. Zh.-1989. -V. 30, № 1.-P. 89-95.
  • Gordon E. I. On Loeb measures//Izv. Vyssh. Uchebn. Zaved. Mat.-1991.-№ 2.-P. 25-33.
  • Gordon E. I. Nonstandard analysis and compact abelian groups//Sibirsk. Mat. Zh.-1991.-V. 32, № 2.-P. 26-40.
  • Gordon E. I. Nonstandard analysis and locally compact abelian groups//Acta Applicandae Math.-1991.-V. 25.-P. 221-239.
  • Gordon E. I. Nonstandard Methods in Commutative Harmonic Analysis.-Providence, RI: Amer. Math. Soc., 1997.
  • Grayson R. J. Heyting-valued models for intuitionistic set theory//Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977).-Berlin: Springer, 1979.-P. 402-414.
  • Gutman A. E., Emel'yanov E. Yu., Kusraev A. G., and Kutateladze S. S. Nonstandard Analysis and Vector lattices.-Novosibirsk: Sobolev Institute Press, 1999.-380 p.
  • Helgason S. The Radon Transformation.-Boston a.o.: Birkhauser, 1980; Moscow: Mir, 1983.
  • Hofman K. H. and Keimel K. Sheaf theoretical concepts in analysis: bundles and sheaves of Banach spaces, Banach C(X)-modules//Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977).-Berlin: Springer, 1979.-P. 415-441.
  • Hogbe-Nlend H. Theorie des Bornologie et Applications.-Berlin etc.: Springer, 1971.
  • Hurd A. E. (ed.) Nonstandard Analysis. Recent Development.-Berlin: Springer, 1983.
  • Ivanov V. V. Oscillations of means in the ergodic theorem//Dokl. RAS.-1996.-V. 347, № 6.-P. 736-738.
  • Ivanov V. V. Geometric properties of monotone functions and probabilities of random fluctuations//Sibirsk. Mat. Zh.-1996.-V. 37, № 1.-P. 117-150.
  • Johnstone P. T. Topos Theory. London etc.: Academic Press, 1977.
  • Kachurovskii A. G. Boundedness of mean fluctuations in the statistical ergodic theorem//Optimizaton.-1990.-V. 65, № 48.-P. 71-77.
  • Kachurovskii A. G. The rates of convergence in ergodic theorem//Uspekhi Mat. Nauk.-1996.-V. 51, № 4.-P. 73-124.
  • Kanovei V. and Reeken M. Internal approach to external sets and universes//Studia Logica.-Part I: 1995.-V. 55.-P. 227-235; Part II: 1995.-V. 55.-P. 347-376; Part III: 1996.-V. 56.-P. 293-322.
  • Kanovei V. and Reeken M. Mathematics in a nonstandard world, I//Math. Japonica.-1997.-V. 45, № 2.-P. 369-408.
  • Kanovei V. G. On well-posedness of the Euler method of decomposition of sinus to infinite product//Uspekhi Mat. Nauk.-1988.-V. 43, № 4.-P. 57-81.
  • Keldysh M. V. On completeness of eigenfunctions of some classes of nonselfadjoint operators//Uspekhi Mat. Nauk.-1971.-V. 26, № 4.-P. 15-41.
  • Khurgin Ya. I. and Yakovlev V. P. Finite Functions in Physics and Technology [in Russian].-Moscow: Nauka, 1971.
  • Kusraev A. G. and Kutateladze S. S. Nonstandard Methods of Analysis.-Novosibirsk: Nauka, 1990; Dordrecht: Kluwer Academic Publishers, 1994.
  • Kusraev A. G. and Kutateladze S. S. On combination of nonstandard methods//Sibirsk. Mat. Zh.-1990.-V. 31, № 5.-P. 111-119.
  • Kusraev A. G. and Kutateladze S. S. Subdifferentials: Theory and Applications. Novosibirsk: Nauka, 1992: Dordrecht: Kluwer Academic Publishers, 1995.
  • Kusraev A. G. and Kutateladze S. S. The Krein-Mil'man theorem and Kantorovich spaces//Optimization.-1992.-V. 68, № 51.-P. 5-18.
  • Kusraev A. G. and Kutateladze S. S. Nonstandard methods in geometric functional analysis//Amer. Math. Soc. Transl.-1992.-Ser. 2.-V. 151.-P. 91-105.
  • Kusraev A. G. and Kutateladze S. S. 55 Unsolved Problems of Nonstandard Analysis [in Russian].-Novosibirsk: Novosibirsk State Univ. Press, 1993.-16 p.
  • Kusraev A. G. and Kutateladze S. S. Nonstandard methods in functional analysis//Interaction Between Functional Analysis, Harmonic Analysis, and Probability Theory.-New York: Marcel Dekker Inc., 1995.-P. 301-306.
  • Kusraev A. G. and Kutateladze S. S. On combined nonstandard methods in functional analysis//Vladikavkaz Mat. J.-2000.-V. 2. № 1. (http://alanianet.ru/omj/journal.htm)
  • Kusraev A. G. and Kutateladze S. S. On combined nonstandard methods in the theory of positive operators//Matematychni Studii. 1997.-V. 7, № 1.-P. 33-40.
  • Kusraev A. G. and Kutateladze S. S. Boolean Valued Analysis. Novosibirsk: Nauka, 1999; Dordrecht: Kluwer Academic Publishers, 1999.
  • Kutateladze S. S. Fundamentals of Functional Analysis, Nauka, Novosibirsk, 1983; Dordrecht: Kluwer Academic Publishers, 1996.
  • Kutateladze S. S. A variant of nonstandard convex programming//Sibirsk. Mat. Zh.-1986.-V. 27, № 4.-P. 84-92.
  • Levin B. Ya. Distributions of Roots of Entire Functions [in Russian].-Moscow: Gostekhizdst, 1956.
  • Levin V. L. Convex Analysis in Spaces of Measurable Functions and Its Application in Mathematics and Economics [in Russian].-Moscow: Nauka, 1985.
  • Lindenstrauss J. Extension of Compact Operators//Memours AMS.-1964.-V. 48.-112 p.
  • Luxemburg W. A. J. What is nonstandard analysis?//Amer. Math. Monthly.-1973.-V. 80, № 6.-P. 38-67.
  • Mazon J. M., Segura de Leon S. Order bounded orthogonally additive operators//Rev. Roum. Math. Pures Appl.-1990.-V. 35, № 4.-P. 329-353.
  • Maz'ya V. G. The Spaces of S. L. Sobolev [in Russian]. Leningrad: Leningrad University Publ. House, 1985.
  • Maz'ya V. G. and Khavin B. P. A nonlinear potential theory//Uspekhi Mat. Nauk.-1972.-V. 27, № 6.-P. 67-138.
  • Natterer F. The Mathematics of Computerized Tomography.-Stuttgart, New York a. o.: Teubner, Wily & Sons, 1986; Њoscow: Mir, 1990.
  • Peraire Y. Une nouvelle theorie des infinitesimaux//C. R. Acad. Aci. Paris Ser. I.-1985.-V. 301, № 5.-P. 157-159.
  • Peraire Y. A general theory of infinitesimals//Sibirsk. Mat. Zh.-1990.-V. 31, № 3.-P. 107-124.
  • Peraire Y. Theorie relative des ensembles internes//Osaka J. Math.-1992.-V. 29, № 2.-P. 267-297.
  • Pietsch A. Operator Ideals. Berlin: VEB Deutschen Verlag der Wissenschaften, 1978; Moscow: Mir, 1982.
  • Raebiger F. and Wolff M. P. H. Spectral and asymptotic properties of dominated operators//J. Austral. Math. Soc. (Series A).-1997.-V. 63.-P. 16-31.
  • Raebiger F. and Wolff M. P. H. On the approximation of positive operators and the behaviour of the spectra of the approximants//Integral Equations Operator Theory.-1997.-V. 28.-P. 72-86.
  • Rudin W. Functional Analysis. New York: McGraw-Hill Book Co., 1973; Moscow: Mir, 1975.
  • Schaefer H. H. Banach Lattices and Positive Operators.-Berlin etc.: Springer, 1974.-376 p.
  • Schwarz H.-U. Banach Lattices and Operators.-Leipzing: Teubner, 1984.-208 p.
  • Solovay R. M. A model of set theory in which every set of reals is Lebesgue measurable//Ann. of Math. (2).-1970.-V. 92, № 2.-P. 1-56.
  • Solovay R. and Tennenbaum S. Iterated Cohen extensions and Souslin's problem//Ann. Math.-1972.-V. 94, № 2.-P. 201-245.
  • Stern J. The problem of envelopes for Banach spaces//Israel J. Math.-1976.-V. 24, № 1.-P. 1-15.
  • Stern J. Some applications of model theory in Banach space theory//Ann. Math. Logic.-1976.-V. 9, № 1.-P. 49-121.
  • Stroyan K. D. and Luxemburg W. A. J. Introduction to the Theory of Infinitesimals.-New York etc.: Academic Press, 1976.
  • Takeuti G. Quantum set theory//Current Issues in Quantum Logic (Erice, 1979).-New York and London: Plenum Press, 1981.-P. 303-322.
  • Takeuti G. and Titani S. Globalization of intuitionistic set theory//Ann. Pure Appl. Logic.-1987.-V. 33, № 2.-P. 195-211.
  • Takeuti G. and Titani S. Heyting-valued universes of intuitionistic set theory//Logic Symposia, Hakone 1979, 1980 (Hakone, 1979/1980).-Berlin and New York: Springer, 1981.-P. 189-306.
  • Takeuti G. and Zaring W. M. Axiomatic Set Theory.-New York: Springer, 1973.-238 p.
  • Troickii V. G. Nonstandard discretization and the Loeb extension of family of measures//Sibirsk. Mat. Zh.-1993.-V. 34, № 3.-P. 190-198.
  • Veksler A. I. and Gordon E. I. Nonstandard extension of not-everywhere-defined positive operators//Sibirsk. Mat. Zh.-1994.-V. 35, № 4.-P. 720-727.
  • Vershik A. M. and Gordon E. I. The groups locally embedded into the class of finite groups//Algebra and Analysis.-1997.-V. 9, № 1.-P. 71-97.
  • Wolff M. P. H. An introduction to nonstandard functional analysis//L. O. Arkeryd, N. J. Cutland, C. Ward Henson (eds): Nonstandard Analysis, Theory and Applications.-Kluwer: Dordrecht, 1997.-P. 121-151.
  • Zvonkin A. K., Shubin M. A. Nonstandard analysis and singular perturbations of ordinary differential operators//Uspekhi Mat. Nauk.-1984.-V. 34, № 2.-P. 77-127.
Еще
Статья научная