Усиление бетонных балок углепластиком с учетом исходного состояния
Автор: Мирсаяпов И.Т., Апхадзе Г.Т., Нугужинов Ж.С.
Журнал: Строительство уникальных зданий и сооружений @unistroy
Статья в выпуске: 4 (109), 2023 года.
Бесплатный доступ
Объектом исследования является несущая способность нормальных сечений изгибаемых железобетонных конструкций, армированных в растянутой зоне высокопрочными углепластиковыми материалами. Целью исследования является аналитическое получение наиболее универсальной и точной зависимости для определения предельного изгибающего момента элементов, армированных в растянутой зоне углепластиковыми материалами, с учетом их исходного состояния до усиления при разрушении сжатой зоны бетона. Задачами исследования являются: аналитическое получение зависимости для высоты сжатой зоны бетона в сечении в предельном состоянии после усиления с учетом начального напряженного состояния; сравнение несущей способности, полученной с учетом представленных зависимостей, по зависимостям, принятым в действующих нормативных документах, а также по нелинейной деформационной модели.
Конструкции зданий, железобетон, бетон, балки, композитные материалы, армирование, углепластик, углепластик, стеклопластик, усиление конструкций
Короткий адрес: https://sciup.org/143182722
IDR: 143182722 | DOI: 10.4123/CUBS.109.29
Список литературы Усиление бетонных балок углепластиком с учетом исходного состояния
- Mirsayapov Ilshat, Yakupov S. and Hassoun M. (2020) About concrete and reinforced concrete corrosion. STCCE-2020 IOP Conference Series: Materials Science and Engineering. Kazan, Russia, 517, Vol. 890, 012061. https://doi.org/10.1088/1757-899X/890/1/012061.
- Mirsayapov Ilshat, Khorkov E., Minzianov R. (2021) Research of the stress-strain state of a reinforced concrete beamless floor. 2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021). France, 2021, Vol. 3031, 03031. https://doi.org/10.1051/e3sconf/202127403031.
- Rimshin Vladimir I., Truntov Pavel S. (2023) Strengthening of reinforced concrete structures by composite materials taking into consideration the carbonization of concrete. Structural Mechanics of Engineering Constructions and Buildings. 19(2), 178-185. https://doi.org/10.22363/1815-5235-2023-19-2-178-185.
- J. G. Teng, J. F. Chen, S. T. Smith, and L. Lam. (2003) Behaviour and strength of FRP-strengthened RC structures: a state-of-the-art review. ICE Proceedings Structures and Buildings. Vol. 156 No 1, 51-62. https://doi.org/10.1680/stbu.2003.156.1.51.
- Ehab Hamed, Rabinovitch O. (2008) Masonry walls strengthened with composite materials-dynamic out-of-plane behavior. European Journal of Mechanics-A/Solids. 27(6), 1037-1059. https://doi.org/10.1016/j.euromechsol.2008.01.003.
- Rizkalla S., Hassan T., Hassan N. (2003) Design recommendations for the use of FRP for reinforcement and strengthening of concrete structures. Progress in Structural Engineering and Materials. 5(1), 16-28. https://doi.org/10.1002/pse.139.
- SP 164.1325800.2014. Strengthening of reinforced concrete structures by FRP composites Regulation of design. https://www.minstroyrf.gov.ru/docs/3826/ (date of application: 08.08.2014).
- Mirsayapov Ilshat and Apkhadze G. (2020) Modified trilinear stress-strain diagram of concrete designed for calculation of beams with fiberglass rebar. STCCE-2020 IOP Conference Series: Materials Science and Engineering. Kazan. Russia, 517, Vol. 890, 012079. https://doi.org/10.1088/1757-899X/890/1/012079
- Bentz E.C. Sectional Analysis of Reinforced Concrete Members. Department of Civil Engineering, University of Toronto. Toronto, ON, Canada, 2000. 86 p. https://tspace.library.utoronto.ca/bitstream/1807/13811/1/NQ49840.pdf
- Lazouski D., Gluhau D., Lazouski Y. (2022) Modeling of the behavior of reinforced concrete elements, strengthened in the tensioned zone, under the action of a long-term load. Vestnik Polotskogo gosudarstvennogo universiteta, 8, 75-80. https://doi.org/10.52928/2070-1683-2022-31-8-75-80.
- Radaykin O. (2021) Theoretical foundations of the diagram method for calculating rod elements made of reinforced. E3S Web of Conferences. 281, 01015. https://doi.org/10.1051/e3sconf/202128101015.
- Mirsayapov Ilshat., Apkhadze G., Simakov V. (2023) Numerical analysis of nonlinear behavior of reinforced concrete structures on solid models. Monograph. Kazan State University of Architecture and Engineering, 211 p. URL: https://elibrary.ru/fwgpiq
- Fialko S. Yu., Perelmuter A.V. (2019). Inelastic analysis of reinforced concrete structures in SCAD. International Journal for Computational Civil and Structural Engineering. 15(1), 54-60. https://doi.org/10.22337/2587-9618-2019-15-1-54-60.
- Frolov Kirill E (2019) Experimental studies of reinforced concrete structures of hydraulic structures strengthened with composite materials. Structural mechanics of engineering constructions and buildings. 15(3), 237-242. https://doi.org/10.22363/1815-5235-2019-15-3-237-242.
- Akbarzadeh, H., Maghsoudi, A.A. (2010). Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer. Materials & Design. 31, 1130-1147. https://doi.org/10.1016/j.matdes.2009.09.041.
- Ghernouti Y., Rabehi B., Benhamna A. and Hadj Mostefa. (2014). Strengthening of concrete beams by CFRP: Experimental study and finite element analysis. J. Build. Mater. Struct. 1, 47-57. https://doi.org/10.5281/ZENODO.241942.
- Jian-he Xie, Ruo-Lin Hu (2013). Experimental study on rehabilitation of corrosion-damaged reinforced concrete beams with carbon fiber reinforced polymer. Construction and Building Materials. 38, 708-716. https://doi.org/10.1016/j.conbuildmat.2012.09.023.
- Kotynia Renata (2012). Bond between FRP and concrete in reinforced concrete beams strengthened with near surface mounted and externally bonded reinforcement. Construction and Building Materials. 32, 41-54. https://doi.org/10.1016/j.conbuildmat.2010.11.104.
- Sena-Cruz JM, Barros JAO, Azevedo AFM, Gettu R. (2006) Bond behavior of near-surface mounted CFRP laminate strips under monotonic and cyclic loading. Journal of Composites for Construction. Vol. 10 No 4, 295-303. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:4(29.
- Mirsayapov Ilshat and Minzianov R. (2020) Rebar movement in seals under static loading. STCCE-2020 IOP Conference Series: Materials Science and Engineering. Kazan. Russia, 517, Vol. 890, 0120731. https://doi.org/10.1088/1757-899X/890/1/012073.
- Ehab Hamed, Bradford, M.A. (2012) Flexural time-dependent cracking and post-cracking behaviour of FRP strengthened concrete beams. International journal of Solid and Structures. 49, 1595-1607. https://doi.org/10.1016/j.ijsolstr.2012.03.001.
- Plevris N., Triantafillou T.C. (1994) Time‐Dependent Behavior of RC Members Strengthened with FRP Laminates. Journal of Structural Engineering, Vol. 120. No. 3. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:3(1016).
- Rabinovitch O., Frostig Y. (2000) Closed-Form High-Order Analysis of RC Beams Strengthened with FRP Strips. Journal of Composites for Construction. Vol. 4. No. 2, 65-74. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:2(65).
- Rabinovitch O., Frostig Y. (2001) Nonlinear High-Order Analysis of Cracked RC Beams Strengthened with FRP Strips. Journal of Structural Engineering, Vol. 127. No. 4, 381-389. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:4(381).
- Picard A., Massicotte B., Boucher E. (1995) Strengthening of reinforced concrete beams with composite materials: theoretical study. Composite Structures. 33(2), 63-75. https://doi.org/10.1016/0263-8223(95)00106-9.
- Tan K.H., Saha M.K. (2006) Long-term deflections of reinforced concrete beams externally bonded with FRP system. Journal of Composites for Construction. 10(6), 474-482. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:6(47.
- Chami G. Al., Thériault M., Neale K.W. (2009) Creep behaviour of CFRP-strengthened reinforced concrete beams. Construction and Building Materials. 23(4), 1640-1652. https://doi.org/10.1016/j.conbuildmat.2007.09.006.
- SNiP 2.03.01-84*. Concrete and reinforced concrete structures. Building codes and regulations. 1989. 80 p. URL: https://docs.cntd.ru/document/871001190.
- SP 63.13330.2018. Concrete and reinforced concrete structures. General provisions. Сode of practice. 2019. 137 p. URL: https://minstroyrf.gov.ru/docs/18227/
- Karpenko N.I., Radaykin O.V (2017) About construction of concrete deformation diagrams at uniaxial short-time tension/compression with the use of the damage deformation criterion. Bulletin of Civil Engineers, 6, 71-78. https://doi.org/10.23968/1999-5571-2017-14-6-71-78.