Using of data mining techniques to predict of student's performance in industrial institute of Al-Diwaniyah, Iraq
Бесплатный доступ
The aim of paper is to show the benefits of the educational data mining (EDM) techniques, in order to understand about of the factors which lead to technical student’s success and failure, and predict their performance and determine the individual learning ability in engineering sciences. For these goals, we use the individual data of 311 student and their grades that were collected in Industrial Institute of Al-Diwaniyah city (Iraq) during 2015-2017 academic years, in order to predict the results of final theoretical exam in industrial drawing by applying EDM techniques, such as association rules mining, classification with decision tree algorithm learning, clustering with Apriori algorithm and anomaly detection implemented as the output model of the clustering. Using Microsoft SQL Server Business Intelligence Development Studio 2012 platform and based on Cross Industry Standard Process for Data Mining, we prepare of 13 nominal and numerical attributes for each student and consequently apply and finally evaluate all 4 EDM techniques. We conclude that: 1) association rules were revealed that the most important factor which contribute to the failure of the student is the “project” attribute; 2) decision tree classification permit to the teacher predict the future students and to correct the student's prediction path, but 3) clustering collects of the students into successful and failure groups and helps to the teacher to guide each group separately, and 4) to detect anomaly by аn extension DMX for SQL and correct the education process for students located on the border of the cluster.
Individual learning, data mining techniques, sql server business intelligence deve- lopment studio, clustering, classification, association rules, anomaly detection, sql server business intelligence development studio
Короткий адрес: https://sciup.org/147232227
IDR: 147232227 | DOI: 10.14529/ctcr190111
Список литературы Using of data mining techniques to predict of student's performance in industrial institute of Al-Diwaniyah, Iraq
- Han, J. Data Mining Concepts and Techniques / J. Han, M. Kamber, J. Pei. - Morgan Kaufman. Third Edition, USA, 2011. - 744 p.
- Hand Book of Educational Data Mining / C. Romero, S. Ventura, P. Pechenizkiy, M.R. Baker. - CRC Press, USA, 2010. - 535 p.
- Educational Data Mining: Predictive Analysis of Academic Performance of Public School Students in the Capital of Brazil / E. Fernandes et al. // Journal of Business Research, Elsevier Inc. - 2019. - Vol. 94, no. 1. - P. 335-343. DOI: 10.1016/j.jbusres.2018.02.012
- Абдуллаев, С.М. Компьютерные системы индивидуального обучения: особенности модели студента / С.М. Абдуллаев, О.Ю. Ленская, Я.К. Салал // Университет XXI века в системе непрерывного образования. Материалы IV Международной научно-практической конференции, 11-12 октября 2018, Челябинск. - Челябинск, 2018. - С. 7-14.
- Matsebula, F. A Big Data Architecture for Learning Analytics in Higher Education / F. Matsebula, E. Mnrandla // AFRICON. - IEEE Trans., 2017. - P. 951-956. DOI: 10.1109/AFRCON.2017.8095610
- Zimek, S. Outlier detection / S. Zimek // Encyclopedia of Database Systems. - Springer, New York, NY, 2017. - P. 1-5.
- Brown, M.S. What IT Needs To Know About The Data Mining Process / M.S. Brown. - Published by Forbes. - https://www.forbes.com/sites/metabrown/2015/07/29/what-it-needs-to-know-about-the-data-mining-process/#9c974cc515.
- Mariscal, G. A Survey of Data mining and Knowledge Discovery Process Models and Methodologies / G. Mariscal, Ó. Marbán, C. Fernández // The Knowledge Engineering Review. - 2010. - Vol. 25, no. 2. - P. 137-166.
- DOI: 10.1017/S0269888910000032
- Hou, Z. Data Mining Method and Empirical Research for Extension Architecture Design / Z. Hou // International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). - IEEE Trans, 2018. - P. 275-278.
- DOI: 10.1109/ICITBS.2018.00077
- Introducing Business Intelligence Development Studio. - https://msdn.microsoft.com/it-it/ library/ms173767 (v=sql.105).aspx.
- MacLennan, J. Data Mining with SQL Server 2008 / J. MacLennan, Z. Tang, B. Crivat. - Wiley Publ., Indianapolis, Indiana, US, 2008. - 672 p.
- Predicting Students' Behavioral Patterns in University Networks for Efficient Bandwidth Allocation: A Hybrid Data Mining Method (Application Paper) / Z.E.A. Noughabi et al. // 17th Int. Conf. on Information Reuse and Integration (IRI). IEEE Trans. - 2016. - P. 102-109.
- DOI: 10.1109/IRI.2016.21
- Zhang, W. A brief analysis of the key technologies and applications of educational data mining on online learning platform / W. Zhang, S. Qin // IEEE 3rd International Conference on Big Data Analysis (ICBDA). - IEEE Trans. - 2018. - P. 83-86.
- DOI: 10.1109/ICBDA.2018.8367655
- Agrawal, S. Survey on Anomaly Detection Using Data Mining Techniques / S. Agrawal, J. Agrawal // Procedia Computer Science. - 2015. - Vol. 60. - P. 708-713.
- DOI: 10.1016/j.procs.2015.08.220
- Абдуллаев С.М., Ленская О.Ю., Салал Я.К. Компьютерные системы индивидуального обучения: предпосылки и перспективы / С.М. Абдуллаев, О.Ю. Ленская, Я.К. Салал // Вестник ЮУрГУ. Серия «Образование. Педагогические науки». - 2018. - Т. 10, № 4. - С. 64-71.
- DOI: 10.14529/ped180408