Using the Mask R-CNN model for segmentation of real estate objects in aerial photographs
Автор: Vinokurov I.V.
Журнал: Программные системы: теория и приложения @programmnye-sistemy
Рубрика: Прикладные программные системы
Статья в выпуске: 1 (64) т.16, 2025 года.
Бесплатный доступ
The mass appearance of illegal and unregistered in the Unified State Register of Real Estate (USRRE) real estate objects complicates cadastral registration for many entities at the territorial and administrative levels. Traditional methods of identifying objects of this type, based on manual analysis of geospatial data, are labor-intensive and time-consuming. To improve the efficiency of this process, it is proposed to automate the detection of objects in aerial photographs by solving the instance segmentation problem using the Mask R-CNN deep learning model. The article describes the preparation of a dataset for this model, examines the main quality metrics, and analyzes the results obtained. The efficiency of the Mask R-CNN model in practice is shown for solving the problem of detecting construction projects that are not registered in the USRRE.
Cadastral registration, aerial photography analysis, instance segmentation, mask r-cnn, pytorch
Короткий адрес: https://sciup.org/143184153
IDR: 143184153 | DOI: 10.25209/2079-3316-2025-16-1-3-44