Устойчивость поверхности раздела тонких слоев жидкости при касательных высокочастотных вибрациях
Автор: Хилько Григорий Леонидович
Журнал: Вычислительная механика сплошных сред @journal-icmm
Статья в выпуске: 4 т.12, 2019 года.
Бесплатный доступ
В работе теоретически исследовано поведение системы двух равных по толщине тонких слоев несмешивающихся несжимаемых изотермических идеальных жидкостей под действием высокочастотных горизонтальных гармонических вибраций. Сосуд, содержащий жидкости, полагался замкнутым, двумерным, прямоугольным, со слабо деформируемыми боковыми границами, бесконечно протяженным в горизонтальном направлении. Из литературы известно, что для данной системы при достаточно тонких слоях основная неустойчивость - вибрационная неустойчивость Кельвина-Гельмгольца - носит длинноволновый характер. Поэтому задача решалась аналитически с использованием приближения «мелкой воды»: уравнения раскладывались в ряд по малым параметрам, один из которых был связан с малым отношением характерных вертикального и горизонтального масштабов, другой - с малыми возмущениями плоской поверхности раздела. Получены эволюционные уравнения в главном порядке разложения для поверхности раздела в подкритической области, то есть там, где интенсивность вибраций меньше критической (необходимой для возбуждения вибрационной неустойчивости Кельвина-Гельмгольца)...
Застывшая волна, вибрации, пульсационное течение, среднее течение, поверхность раздела, вибрационная неустойчивость кельвина-гельмгольца, приближение "мелкой воды"
Короткий адрес: https://sciup.org/143168909
IDR: 143168909 | DOI: 10.7242/1999-6691/2019.12.4.31
Список литературы Устойчивость поверхности раздела тонких слоев жидкости при касательных высокочастотных вибрациях
- Wolf G.H. The dynamic stabilization of rayleigh-taylor instability and corresponding dynamic equilibrium // Z. Physik. 1969. Vol. 227. P. 291-300.
- Bezdenezhnykh N.A., Briskman V.A., Lapin A.Y., Lyubimov D.V., Lyubimova T.P., Tcherepanov A.A., Zakharov I.V. The influence of high frequency tangential vibrations on the stability of the fluid interface in microgravity // Int. J. Microgravity Res. Appl. 1991. Vol. 4(2). P. 96-97; Sauer R. Einführung in die theoretische Gasdynamik. Springer-Verlag, 1960. 214 p.
- Bezdenezhnykh N.A., Briskman V.A., Lapin A.Y., Lyubimov D.V., Lyubimova T.P., Tcherepanov A.A., Zakharov I.V. The influence of high frequency tangential vibrations on the stability of the fluid interface in microgravity // Microgravity Fluid Mechanics / Ed. H.J. Rath. Springer, 1992. P. 137-144.
- Ivanova A.A., Kozlov V.G., Evesque P. Interface dynamics of immiscible fluids under horizontal vibration // Fluid Dyn. 2001. Vol. 36. P. 362-368.
- Talib E., Jalikop S.V., Juel A. The influence of viscosity on the frozen wave instability: theory and experiment // J. Fluid Mech. 2007. Vol. 584. P. 45-68.
- Lyubimov D.V., Cherepanov A.A. Development of a steady relief at the interface of fluids in a vibrational field // Fluid Dyn. 1986. Vol. 21. P. 849-854.
- Khenner M.V., Lyubimov D.V., Belozerova T.S., Roux B. Stability of plane-parallel oscillatory flow in a two-layer system // Eur. J. Mech. B Fluid. 1999. Vol. 18. P. 1085-1101.
- Yoshikawa H.N., Wesfreid J.E. Oscillatory Kelvin-Hemlholtz instability. Part 1. A viscous theory // J. Fluid Mech. 2011. Vol. 675. P. 223-248.
- Talib E., Juel A. Instability of a viscous interface under horizontal oscillation // Phys. Fluids. 2007. Vol. 19. 092102.
- Lyubimov D.V., Ivantsov A.O., Lyubimova T.P., Khilko G.L. Numerical modeling of frozen wave instability in fluids with high viscosity contrast // Fluid Dyn. Res. 2016. Vol. 48. 061415.
- Lyubimov D.V., Khilko G.L., Ivantsov A.O., Lyubimova T.P. Viscosity effect on the longwave instability of a fluid interface // J. Fluid Mech. 2017. Vol. 814. P. 24-41.
- Goldobin D.S., Kovalevskaya K.V., Lyubimov D.V. Elastic and inelastic collisions of interfacial solitons and integrability of a two-layer fluid system subject to horizontal vibrations // EPL. 2014. Vol. 108. 54001.
- Goldobin D.S., Pimenova A.V., Kovalevskaya K.V., Lyubimov D.V., Lyubimova T.P. Running interfacial waves in two-layer fluid system subject to longitudinal vibrations // Phys. Rev. E. 2015. Vol. 91. 053010.
- Любимов Д.В., Любимова Т.П., Черепанов А.А. Динамика поверхностей раздела в вибрационных полях. М.: Физматлит, 2003. 216 с.