Устойчивость пространственных структурных элементов: влияние фактического моделирования
Автор: Мущанов В.Ф., Мущанов А.В., Цепляев М.Н., Оржеховский А.Н.
Журнал: Строительство уникальных зданий и сооружений @unistroy
Статья в выпуске: 4 (109), 2023 года.
Бесплатный доступ
Объектом исследования являются элементы пространственных металлических конструкций - пространственные каркасы и резервуары. Целью данной работы является уточнение параметров напряженно-деформированного состояния стержневых элементов конструктивных покрытий и стенок вертикальных цилиндрических резервуаров, выполняемое при оценке их устойчивости.
Пространственные металлические конструкции, пространственные каркасы, резервуары, листовые конструкции, напряженно-деформированное состояние, моделирование конструкций, метод конечных элементов, устойчивость, статические нагрузки, пластичность
Короткий адрес: https://sciup.org/143182710
IDR: 143182710 | DOI: 10.4123/CUBS.109.17
Список литературы Устойчивость пространственных структурных элементов: влияние фактического моделирования
- Timoshenko, S.P. and Gere, J. (1985) Theory Of Elastic Stability, 2nd Edition. McGraw-Hill, New York. https://structures.dhu.edu.cn/_upload/article/files/c2/53/6997426d46cb8f09fcd5d26175e2/5bcfea4b-34b9-48f7-966b-a74ab5ddae8c.pdf.
- Perelmuter, A.V. and Slivker, V.I. (2010) Design Balance Stability and Related Problems (In Russian). Volume 2., SCAD-Soft, Moscow. URL: https://rusneb.ru/catalog/000200_000018_RU_NLR_bibl_1736545/
- Perelmuter, A.V. and Slivker, V.I. (2010) Design Balance Stability and Related Problems (In Russian). Volume 1., SCAD-Soft, Moscow. URL: https://rusneb.ru/catalog/000200_000018_RU_NLR_bibl_1736545/
- Perelmuter, A.V. and Slivker, V.I. (2011) Design Balance Stability and Related Problems (In Russian). Volume 3., SCAD-Soft, Moscow. URL: https://rusneb.ru/catalog/000200_000018_RU_NLR_bibl_1736545/
- Partskhaladze, G., Mshvenieradze, I., Medzmariashvili, E., Chavleshvili, G., Yepes, V. and Alcala, J. (2019) Buckling Analysis and Stability of Compressed Low-Carbon Steel Rods in the Elastoplastic Region of Materials. Advances in Civil Engineering, Hindawi, 2019. https://doi.org/10.1155/2019/7601260.
- Li, B., Luo, H., Wang, X. and Bosco, M. (2020) Failure Analysis of Locally Damaged Slender Steel Bars Strengthened with CFRP Composites: Experiments, Theory, and Computational Simulations. Advances in Civil Engineering, 2020, 1–14. https://doi.org/10.1155/2020/8831701.
- Johannessen, H., Johannessen, O.H., Costas, M., Clausen, A.H. and Sønstabø, J.K. (2021) Experimental and Numerical Study of Notched SHS Made of Different S355 Steels. Journal of Constructional Steel Research, 182, 2023. https://doi.org/10.1016/j.jcsr.2021.106673.
- Gkantou, M. (2021) Numerical Study of Aluminium Alloy Square Hollow Section Columns. Lecture Notes in Civil Engineering, 143 LNCE, 709–717. https://doi.org/10.1007/978-981-33-6969-6_62.
- Meng, X. and Gardner, L. (2020) Testing of Hot-Finished High Strength Steel SHS and RHS under Combined Compression and Bending. Thin-Walled Structures, 148, 2023. https://doi.org/10.1016/j.tws.2019.106262.
- Wang, X., Cheng, X. and Liao, F. (2021) Research on Ultimate Bearing Capacity of Cold-Formed Steel Square Hollow Sections. Xi’an Jianzhu Keji Daxue Xuebao/Journal of Xi’an University of Architecture and Technology, 53, 2023. https://doi.org/10.15986/j.1006-7930.2021.03.012.
- Yan, X. and Gernay, T. (2022) Local Buckling of Cold-Formed High-Strength Steel Hollow Section Columns at Elevated Temperatures. Journal of Constructional Steel Research, 196, 2023. https://doi.org/10.1016/j.jcsr.2022.107403.
- Pandey, M. and Young, B. (2023) Behaviour of Cold-Formed High Strength Steel Tubular X-Joints with Circular Braces and Rectangular Chords. Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems - Proceedings of the 8th International Conference on Structural Engineering, Mechanics and Computation, 2022, 1172–1177. https://doi.org/10.1201/9781003348443-191.
- Iwai, Y. and Ozaki, F. (2021) Buckling Strength and Post Buckling Residual Strength for a Cold-Formed Steel Square Hollow Section Column at Elevated Temperature. Journal of Structural and Construction Engineering, 86, 1705–1715. https://doi.org/10.3130/aijs.86.1705.
- Sato, T. and Ozaki, F. (2018) Local Buckling Performance of Steel Thin Square Hollow Section at High Temperature. Journal of Structural and Construction Engineering, 83, 1381–1389. https://doi.org/10.3130/aijs.83.1381.
- Anikeev, I.D. and Golikov, A.V. (2018) Derivation and Analysis of Methods for Calculation of Axially Loaded Steel Compression Members Based on Different Building Codes (In Russian). RUDN Journal of Engineering researches, 19, 299–316. https://cyberleninka.ru/article/n/vyvod-i-analiz-metodik-rascheta-tsentralnoszhatyh-stalnyh-sterzhney-zalozhennyh-v-razlichnye-normativnye-dokumenty/viewer (date of application: 30.04.2021).
- Zverev, V. V., Liubavskaia, I. V., Meshcheryakova, E. V. and Sotnikova, M. V. (2018) The Stability of a Compressed Resiliently Supported Rod of Variable Stiffness. IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 456. https://doi.org/10.1088/1757-899X/456/1/012032.
- Zheng, Y. and Zheng, H. (2013) Steel Rod Stability and Inelastic Buckling Study. Applied Mechanics and Materials, Trans Tech Publications Ltd, 626–630. https://doi.org/10.4028/www.scientific.net/AMM.357-360.626.
- Yongfeng, F., Li, W. and Kong Fah, T.E.E. (2020) Analysis of the Steel Structural Reliability under the Big Data. IOP Conference Series: Materials Science and Engineering, 958. https://doi.org/10.1088/1757-899X/958/1/012001.
- Kala, Z. (2017) Stability of Von-Misses Truss with Initial Random Imperfections. Procedia Engineering, The Author(s), 172, 473–480. https://doi.org/10.1016/j.proeng.2017.02.055.
- Sathish, T., Dinesh Kumar, S. and Karthick, S. (2020) Modelling and Analysis of Different Connecting Rod Material through Finite Element Route. Materials Today: Proceedings, Elsevier Ltd, 21, 971–975. https://doi.org/10.1016/j.matpr.2019.09.139.
- Khalafovich, S.G. (2015) Assessment of the Residual Life of Long-Term Operated Vertical Cylindrical Tanks (In Russian). Transportation and storage of petroleum products, 1, 14–18. https://cyberleninka.ru/article/n/otsenka-ostatochnogo-resursa-dlitelno-ekspluatiruemyh-vertikalnyh-tsilindricheskih-rezervuarov.
- Dong, B., Zhang, D., Feng, G. and Lu, H. (2021) Design and Development of Tank Farm Operation Safety Training System. Journal of Beijing University of Chemical Technology (Natural Science Edition), 48, 88–98. https://doi.org/10.13543 /j.bhxbzr.2021.03.011.
- Megdiche, I., Atherton, W., Allanson, D. and Harris, C. (2022) Effect of Mitigation on the Catastrophic Failure of Storage Tanks. Journal of Loss Prevention in the Process Industries, Elsevier Ltd, 80, 104852. https://doi.org/10.1016/j.jlp.2022.104852.
- Mushchanov, V.F. and Tcepliaev, M. (2017) Comparative Analysis of the Effectiveness of Constructive and Design Methods for Ensuring the Stability of the Walls of Vertical Cylindrical Tanks. Metal structures, 23, 123–137. http://donnasa.ru/publish_house/journals/mk/2017-3/03_mushchanov_tcepliaev.pdf.
- Zhao, Y., Liu, Q., Cai, S. and Dong, S. (2020) Internal Wind Pressures and Buckling Behavior of Large Cylindrical Floating-Roof Tanks Under Various Liquid Levels. ASME. J. Pressure Vessel Technol, 142. https://doi.org/https://doi.org/10.1115/1.4046982.
- de Paor, C. (2010) Buckling of Thin-Walled Cylinders: Experimental and Numerical Investigation. The Boolean: Snapshots of Doctoral Research at University College Cork, 47–52. https://doi.org/10.33178/boolean.2010.11.
- Nemati, H. and Ghanbari, G. (2014) Buckling Pressure in Double Wall Cryogenic Storage Tank By Fem. 19, 43–48. https://www.researchgate.net/publication/332242192_BUCKLING_PRESSURE_IN_DOUBLE_WALL_CRYOGENIC_STORAGE_TANK_BY_FEM.
- Hussien, M.A., Yousif, S., Hagag, A., Maged, A. and Mostafa, M. (2020) Stability of Petroleum Storage Tanks Considering the Effect of Helical Stair Beams. International Journal of Research in Engineering & Management, 4, 24–35. https://www.crdeepjournal.org/6380-2/.
- Mushchanov, V. and Tsepliaev, M. (2020) Rational Design Solutions of Ensuring the Walls of Tanks Stability to the Action of Transverse Loads. IOP Conference Series: Materials Science and Engineering, 896. https://doi.org/10.1088/1757-899X/896/1/012024.
- Mushchanov, V. and Tsepliaev, M. (2019) Ensuring the Stability of the Walls of the Tanks Based on the Rational Arrangement of the Stiffening Rings. Construction of Unique Buildings and Structures, 84, 58–73. https://unistroy.spbstu.ru/en/article/2018.72.4/.
- Sun, T., Azzuni, E. and Guzey, S. (2017) Stability of Open-Topped Storage Tanks With Top Stiffener and One Intermediate Stiffener Subject to Wind Loading. Journal of Pressure Vessel Technology, 140. https://doi.org/10.1115/1.4038723.
- Shokrzadeh, A.R., Mansuri, F., Asadi, M. and Sohrabi, M.R. (2020) Comparative Analysis on Buckling Behavior of Steel Cylindrical Tanks by Consideration of More Realistic Numerical Models. 1–8. https://doi.org/10.11159/icsect20.159.
- Gorodetsky, A.S., Barabash, M.S. and Sidorov, V.N. (2016) Computer Modeling in Structural Mechanics Problems. https://elima.ru/books/?id=4116/
- GOST R 58064-2018 “Steel Welded Pipes for Building Structure. Technical Specifications”. https://docs.cntd.ru/document/1200158296/