Вариант Omicron коронавируса SARS-CoV-2 и его разновидности / субварианты

Автор: Щербак С.Г., Вологжанин Д.А., Голота А.С., Сарана А.М., Макаренко С.В.

Журнал: Клиническая практика @clinpractice

Рубрика: Научные обзоры

Статья в выпуске: 3 т.14, 2023 года.

Бесплатный доступ

Коронавирус SARS-CoV-2 уже три года циркулирует среди людей, заражая сотни миллионов человек. Многочисленные сообщения со всего мира свидетельствуют о том, что в настоящее время большинство инфекций вызвано различными вариантами Omicron, преобладающими над всеми ранее появившимися вариантами. Геном штамма Omicron накопил десятки мутаций, которые увеличивают приспособляемость вируса и являются причиной возникновения новых вариантов и субвариантов с повышенной контагиозностью, трансмиссивностью и способностью уклоняться от иммунного ответа. Это ставит под угрозу защиту, обеспечиваемую вакцинами, или гуморальный иммунитет, индуцированный предыдущими инфекциями. Несмотря на то, что биология SARS-CoV-2 хорошо изучена, его способность инфицировать, размножаться и распространяться среди населения зависит от конкретного иммунного контекста в разные периоды пандемии. Предполагается, что новые варианты возникают в результате хронической инфекции у лиц с ослабленным иммунитетом. Внутрилинейная рекомбинация обеспечивает вирусу фенотипические преимущества от отдалённо родственных циркулирующих вариантов. Один из последних субвариантов Omicron, который получил название «Kraken» из-за беспрецедентно высокой трансмиссивности, является потомком рекомбинантной линии. Вирус непрерывно эволюционирует в направлении уклонения от вируснейтрализующих антител, поэтому ведётся постоянная работа по созданию новых более эффективных вакцин и других противовирусных средств.

Еще

Коронавирус, мутация, контагиозность, трансмиссивность, способность уклоняться от иммунного ответа, вакцина, противовирусные средства

Короткий адрес: https://sciup.org/143180552

IDR: 143180552   |   DOI: 10.17816/clinpract322036

Список литературы Вариант Omicron коронавируса SARS-CoV-2 и его разновидности / субварианты

  • Jung C, Kmiec D, Koepke L, et al. Omicron: what makes the latest SARS-CoV-2 variant of concern so concerning? J Virol. 2022;96(6):e0207721. doi: 10.1128/jvi.02077-21
  • Carabelli AM, Peacock TP, Thorne LG, et al. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21(3):162–177. doi: 10.1038/s41579-022-00841-7
  • Afshar ZM, Pirzaman AT, Karim B, et al. SARS-CoV-2 Omicron (B.1.1.529) variant: A challenge with COVID-19. Diagnostics. 2023;13(3):559. doi: 10.3390/diagnostics13030559
  • Kozlov M. Omicron’s feeble attack on the lungs could make it less dangerous. Nature. 2022;601(7892):177. doi: 10.1038/d41586-022-00007-8
  • McMahan K, Giffin V, Tostanoski LH, et al. Reduced pathogenicity of the SARS-CoV-2 Omicron variant in hamsters. Med (NY). 2022;3(4):262–268.e4. doi: 10.1016/j.medj.2022.03.004
  • Callaway E. Heavily mutated Omicron variant puts scientists on alert. Nature. 2021;600(7887):21. doi: 10.1038/d41586-021-03552-w
  • Chatterjee S, Bhattacharya M, Nag S, et al. A detailed overview of SARS-CoV-2 Omicron: Its sub-variants, mutations and pathophysiology, clinical characteristics, immunological landscape, immune escape, and therapies. Viruses. 2023; 15(1):167. doi: 10.3390/v15010167
  • Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, et al. Antibody escape of SARS-CoV-2 Omicron BA. 4 and BA. 5 from vaccine and BA.1 serum. Cell. 2022;185(14):2422–2433.e13. doi: 10.1016/j.cell.2022.06.005
  • Zhou Y, Zhi H, Teng Y. The outbreak of SARS-CoV-2 Omicron lineages, immune escape, and vaccine effectivity. J Med Virol. 2023;95(1):e28138. doi: 10.1002/jmv.28138
  • Arora P, Kempf A, Nehlmeier I, et al. Omicron sublineage BQ.1.1 resistance to monoclonal antibodies. Lancet Infect Dis. 2023;23(1):22–23. doi: 10.1016/S1473-3099(22)00733-2
  • Wang Q, Iketani S, Li Z, et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell. 2023;186(2):279–286.e8. doi: 10.1016/j.cell.2022.12.018
  • Bruel T, Stefic K, Nguyen Y, et al. Longitudinal analysis of serum neutralization of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 in patients receiving monoclonal antibodies. Cell Rep Med. 2022;3(12):100850. doi: 10.1016/j.xcrm.2022.100850
  • Qu P, Evans JP, Faraone JN, et al. Enhanced neutralization resistance of SARS-CoV-2 Omicron subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2. Cell Host Microbe. 2023;31(1):9–17. doi: 10.1016/j.chom.2022.11.012
  • Chakraborty C, Saha A, Bhattacharya M, et al. Natural selection of the D614G mutation in SARS-CoV-2 Omicron (B.1.1.529) variant and its subvariants. Mol Ther Nucleic Acids. 2023;31:437–439. doi: 10.1016/j.omtn.2023.01.013
  • Xia S, Wang L, Jiao F, et al. SARS-CoV-2 Omicron subvariants exhibit distinct fusogenicity, but similar sensitivity, to pan-CoV fusion inhibitors. Emerg Microbes Infect. 2023;12(1):2178241. doi: 10.1080/22221751.2023.2178241
  • Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022;608 (7923):593–602. doi: 10.1038/s41586-022-04980-y
  • Hansen CH, Friis NU, Bager P, et al. Risk of reinfection, vaccine protection, and severity of infection with the BA.5 omicron subvariant: A nation-wide population-based study in Denmark. Lancet Infect Dis. 2023;23(2):167–176. doi: 10.1016/S1473-3099(22)00595-3
  • Wang Y, Long Y, Wang F, et al. Characterization of SARS-CoV-2 recombinants and emerging Omicron sublineages. Int J Med Sci. 2023;20(1):151–162. doi: 10.7150/ijms.79116
  • Arora P, Cossmann A, Schulz SR, et al. Neutralisation sensitivity of the SARS-CoV-2 XBB.1 lineage. Lancet Infect Dis. 2023;23(2):147–148. doi: 10.1016/S1473-3099(22)00831-3
  • Mohapatra RK, Kandi V, Tuli HS, et al. The recombinant variants of SARS-CoV-2: Concerns continues amid COVID-19 pandemic. J Med Virol. 2022;94(8):3506–3508. doi: 10.1002/jmv.27780
  • Shrestha LB, Foster C, Rawlinson W. et al. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission. Rev Med Virol. 2022; 32(5):e2381. doi: 10.1002/rmv.2381
  • Kim MK, Lee B, Choi Y, et al. Clinical characteristics of 40 patients infected with the SARS-CoV-2 Omicron variant in Korea. J Korean Med Sci. 2022;37(3):e31. doi: 10.3346/jkms.2022.37.e31
  • Fall A, Eldesouki RE, Sachithanandham J, et al. The displacement of the SARS-CoV-2 variant Delta with Omicron: An investigation of hospital admissions and upper respiratory viral loads. EBio Med. 2022;79:104008. doi: 10.1016/j.ebiom.2022.104008
  • Tostmann A. Time to consider unusual or severe headache and fatigue as indicator symptoms for COVID-19 testing? Euro Surveill. 2022;27(1):2101188. doi: 10.2807/1560-7917. ES.2022.27.1.2101188
  • Kneidinger N, Hecker M, Bessa V, et al. Outcome of lung transplant recipients infected with SARS-CoV-2/Omicron/B.1.1.529: A Nationwide German study. Infection. 2022;9:1–9. doi: 10.1007/s15010-022-01914-8
  • Hyams C, Challen R, Marlow R, et al. Severity of Omicron (B.1.1.529) and Delta (B.1.617.2) SARS-CoV-2 infection among hospitalised adults: A prospective cohort study in Bristol, United Kingdom. medRxiv. 2023. doi: 10.1101/2022.06.29.22277044
  • World Health Organization; ECDC. Assessment of the further emergence and potential impact of the SARS-CoV-2 omicron variant of concern in the context of ongoing transmission of the Delta variant of concern in the EU/EEA, 18th.
  • CDC COVID-19 Response Team. SARS-CoV-2 B.1.1.529 (Omicron) Variant-United States, December 1–8, 2021. MMWR Morb Mortal Wkly Rep. 2021;70(50):1731–1734. doi: 10.15585/mmwr.mm7050e1
  • Cloete J, Kruger A, Masha M, et al. Paediatric hospitalisations due to COVID-19 during the first SARS-CoV-2 Omicron (B.1.1.529) variant wave in South Africa: A multicentre observational study. Lancet Child Adolesc Health. 2022;6(5):294–302. doi: 10.1016/S2352-4642(22)00027-X
  • Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 Omicron variant in South Africa: A data linkage study. Lancet. 2022;399(10323):437–446. doi: 10.1016/S0140-6736(22)00017-4
  • Abdullah F, Myers J, Basu D, et al. Decreased severity of disease during the first global Omicron variant Covid-19 outbreak in a large hospital in Tshwane, South Africa. Int J Infect Dis. 2022;116:38–42. doi: 10.1016/j.ijid.2021.12.357
  • Meo SA, Meo AS, Al-Jassir FF, Klonoff DC. Omicron SARSCoV-2 new variant: Global prevalence and biological and clinical characteristics. Eur Rev Med Pharmacol Sci. 2021;25(24): 8012–8018. doi: 10.26355/eurrev_202112_27652
  • Bhattacharya M, Chatterjee S, Sharma AR, et al. Delta variant (B.1.617.2) of SARS-CoV-2: Current understanding of infection, transmission, immune escape, and mutational landscape. Folia Microbiol. 2023;68(1):17–28. doi: 10.1007/s12223-022-01001-3
  • Jassat W, Mudara C, Vika C, et al. A cohort study of post-COVID-19 condition across the Beta, Delta, and Omicron waves in South Africa: 6-month follow-up of hospitalized and nonhospitalized participants. Int J Infect Dis. 2023;128:102–111. doi: 10.1016/j.ijid.2022.12.036
  • Soriano JB, Murthy S, Marshall JC, et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102–e107. doi: 10.1016/S1473-3099(21)00703-9
  • Antonelli M, Pujol JC, Spector TD, et al. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2. Lancet. 2022;399(10343):2263–2264. doi: 10.1016/S0140-6736(22)00941-2
  • Wise J. Covid-19: Long covid risk is lower with omicron than delta, researchers find. BMJ. 2022;377:o1500. doi: 10.1136/bmj.o1500
  • Duong BV, Larpruenrudee P, Fang T, et al. Is the SARS CoV-2 Omicron variant deadlier and more transmissible than Delta variant? Int J Environ Res Public Health. 2022;19(8):4586. doi: 10.3390/ijerph19084586
  • Le TT, Vasanthakumaran T, Thi Hien HN, et al. SARS-CoV-2 Omicron and its current known unknowns: A narrative review. Rev Med Virol. 2023;33(1):e2398. doi: 10.1002/rmv.2398
  • Riediker M, Briceno-Ayala L, Ichihara G, et al. Higher viral load and infectivity increase risk of aerosol transmission for Delta and Omicron variants of SARS-CoV-2. Swiss Med Wkly. 2022;152:w30133. doi: 10.4414/SMW.2022.w30133
  • Chen J, Wang R, Gilby NB, Wei GW. Omicron variant (B.1.1.529): Infectivity, vaccine breakthrough, and antibody resistance. J Chem Inf Model. 2022;62(2):412–422. doi: 10.1021/acs.jcim.1c01451
  • Pascarella S, Ciccozzi M, Bianchi M, et al. The electrostatic potential of the Omicron variant spike is higher than in Delta and Delta-plus variants: A hint to higher transmissibility? J Med Virol. 2022;94(4):1277–1280. doi: 10.1002/jmv.27528
  • Araf Y, Akter F, Tang YD, et al. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J Med Virol. 2022;94(5):1825–1832. doi: 10.1002/jmv.27588
  • Bhattacharya M, Chatterjee S, Lee SS, Chakraborty C. Therapeutic applications of nanobodies against SARS-CoV-2 and other viral infections: Current update. Int J Biol Macromol. 2023;229:70–80. doi: 10.1016/j.ijbiomac.2022.12.284
  • Johnson BA, Zhou Y, Lokugamage KG, et al. Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis. PLoS Pathog. 2022;18(6):e1010627. doi: 10.1371/journal.ppat.1010627
  • Lubinski B, Jaimes JA, Whittaker GR. Intrinsic furinmediated cleavability of the spike S1/S2 site from SARSCoV-2 variant B.1.1.529 (Omicron). bioRxiv. 2022. doi: 10.1101/2022.04.20.488969
  • Allen H, Tessier E, Turner C, et al. Comparative transmission of SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants and the impact of vaccination: National cohort study, England. Epidemiol Infect. 2023;1–20. doi: 10.1017/S0950268823000420
  • Lyngse FP, Kirkeby CT, Denwood M, et al. Household transmission of SARS-CoV-2 Omicron variant of concern subvariants BA.1 and BA.2 in Denmark. Nat Commun. 2022; 13(1):5760. doi: 10.1038/s41467-022-33498-0
  • Meng B, Abdullahi A, Ferreira I, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603(7902):706–714. doi: 10.1038/s41586-022-04474-x
  • Zhao H, Lu L, Peng Z, et al. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect. 2022;11(1):277–283. doi: 10.1080/22221751.2021.2023329
  • Willett BJ, Grove J, MacLean OA, et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat Microbiol. 2022;(8):1161–1179. doi: 10.1038/s41564-022-01143-7
  • Suzuki R, Yamasoba D, Kimura I, et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature. 2022;603(7902):700–705. doi: 10.1038/s41586-022-04462-1
  • COVID-19 Forecasting Team. Past SARS-CoV-2 infection protection against re-infection: A systematic review and metaanalysis. Lancet. 2023. doi: 10.1016/S0140-6736(22)02465-5
  • Dewald F, Pirkl M, Ahmadov E, et al. Impaired humoral immunity to BQ.1.1 in convalescent and vaccinated patients. medRxiv. 2023. doi: 10.1101/2022.12.31.22284088
  • Suryawanshi R, Ott M. SARS-CoV-2 hybrid immunity: Silver bullet or silver lining? Nat Rev Immunol. 2022;22(10):591–592. doi: 10.1038/s41577-022-00771-8
  • Goldberg Y, Mandel M, Bar-On YM, et al. Protection and waning of natural and hybrid immunity to SARS-CoV-2. N Engl J Med. 2022;386(23):2201–2212. doi: 10.1056/NEJMoa2118946
  • Xia H, Zou J, Kurhade C, et al. Neutralization and durability of 2 or 3 doses of the BNT162b2 vaccine against Omicron SARS-CoV-2. Cell Host Microbe. 2022;30(4):485–488. doi: 10.1016/j.chom.2022.02.015
  • Gruell H, Vanshylla K, Tober-Lau P, et al. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat Med. 2022;28(3): 477–480. doi: 10.1038/s41591-021-01676-0
  • Wilkinson SA, Richter A, Casey A, et al. Recurrent SARSCoV- 2 mutations in immunodeficient patients. Virus Evol. 2022; 8(2):veac050. doi: 10.1093/ve/veac050
  • Wang Q, Guo Y, Iketani S, et al. Antibody evasion by SARSCoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature. 2022;608(7923):603–608. doi: 10.1038/s41586-022-05053-w
  • Cerutti G, Guo Y, Liu L, et al. Cryo-EM structure of the SARSCoV-2 Omicron spike. Cell Rep. 2022;38(9):110428. doi: 10.1016/j.celrep.2022.110428
  • Agerer B, Koblischke M, Gudipati V, et al. SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8+ T cell responses. Sci Immunol. 2021;6(57):eabg6461. doi: 10.1126/sciimmunol.abg6461
  • Dolton G, Rius C, Hasan MS, et al.; COVID-19 Genomics UK (COG-UK) consortium. Emergence of immune escape at dominant SARS-CoV-2 killer T cell epitope. Cell. 2022; 185(16):2936–2951.e19. doi: 10.1016/j.cell.2022.07.002
  • Tarke A, Coelho CH, Zhang Z, et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell. 2022;185(5):847–859.e11. doi: 10.1016/j.cell.2022.01.015
  • Wellington D, Yin Z, Yu Z, et al. SARS-CoV-2 mutations affect proteasome processing to alter CD8+ T cell responses. bioRxiv. 2022. doi: 10.1101/2022.04.08.487623
  • Arshad N, Laurent-Rolle M, Ahmed WS, et al. SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to downregulate MHC-I surface expression. Proc Natl Acad Sci USA. 2023;120(1):e2208525120. doi: 10.1073/pnas.2208525120
  • Moriyama M, Lucas C. SARS-CoV-2 subvariants evolved to promote further escape from MHC-I recognition. bioRxiv. 2022. doi: 10.1101/2022.05.04.490614
  • Keeton R, Tincho MB, Ngomti A, et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature. 2022;603(7901):488–492. doi: 10.1038/s41586-022-04460-3
  • De la Vega MA, Polychronopoulou E, Xiii A, et al. SARSCoV-2 infection-induced immunity reduces rates of reinfection and hospitalization caused by the Delta or Omicron variants. Emerg Microbes Infect. 2023;12(1):e2169198. doi: 10.1080/22221751.2023.2169198
  • Schmidt F, Muecksch F, Weisblum Y, et al. Plasma neutralization of the SARS-CoV-2 Omicron variant. N Engl J Med. 2022;386(6):599–601. doi: 10.1056/NEJMc2119641
  • Dejnirattisai W, Huo J, Zhou D, et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell. 2022;185(3):467–484.e415. doi: 10.1016/j.cell.2021.12.046
  • Hoffmann M, Krüger N, Schulz S, et al. The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell. 2022; 185(3):447–456.e411. doi: 10.1016/j.cell.2021.12.032
  • Ren SY, Wang WB, Gao RD, Zhou AM. Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance. World J Clin Cases. 2022;10(1):1–11. doi: 10.12998/wjcc.v10.i1.1
  • Ai J, Zhang H, Zhang Y, et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg Microbes Infect. 2022;11(1):337–343. doi: 10.1080/22221751.2021.2022440
  • Kherabi Y, Launay O, Nguyen LB, et al. COVID-19 vaccines against Omicron variant: Real-world data on effectiveness. Viruses. 2022;14(10):2086. doi: 10.3390/v14102086 104
  • Higdon MM, Baidya A, Walter KK, et al. Duration of effectiveness of vaccination against COVID-19 caused by the omicron variant. Lancet Infect Dis. 2022;22(8):1114–1116. doi: 10.1016/S1473-3099(22)00409-1
  • Fang Z, Peng L, Filler R, et al. Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. Nat Commun. 2022;13(1):3250. doi: 10.1038/s41467-022-30878-4
  • Jiang N, Wang L, Hatta M, et al. Bivalent mRNA vaccine improves antibody-mediated neutralization of many SARS-CoV-2 Omicron lineage variants. bioRxiv. 2023. doi: 10.1101/2023.01.08.523127
  • Fang Z, Monteiro VS, Hahn AM, et al. Bivalent mRNA vaccine booster induces robust antibody immunity against Omicron lineages BA.2, BA.2.12.1, BA.2.75 and BA.5. Cell Discov. 2022;8(1):108. doi: 10.1038/s41421-022-00473-4
  • Bhattacharya M, Sharma AR, Dhama K, et al. Hybrid immunity against COVID-19 in different countries with a special emphasis on the Indian scenario during the Omicron period. Int Immunopharmacol. 2022;108:108766. doi: 10.1016/j.intimp.2022.108766
  • Chalkias S, Harper C, Vrbicky K, et al. A Bivalent Omicroncontaining booster vaccine against Covid-19. N Engl J Med. 2022;387(14):1279–1291. doi: 10.1056/NEJMoa2208343
  • Havers FP, Pham H, Taylor CA, et al. COVID-19-associated hospitalizations among vaccinated and unvaccinated adults 18 years or older in 13 US States, January 2021 to April 2022. JAMA Intern Med. 2022;182(10):1071–1081. doi: 10.1001/jamainternmed.2022.4299
  • Ayoubkhani D, Bosworth ML, King S, et al. Risk of Long COVID in people infected with severe acute respiratory syndrome coronavirus 2 after 2 doses of a coronavirus disease 2019 vaccine: Community-based, matched cohort study. Open Forum Infect Dis. 2022;9(9):ofac464. doi: 10.1093/ofid/ofac464
  • Qu P, Faraone JN, Evans JP, et al. Extraordinary evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1 and CA.3.1 Variants. bioRxiv. 2023. doi: 10.1101/2023.01.16.524244
  • Duan M, Duan H, An Y, et al. A booster of Delta-Omicron RBD-dimer protein subunit vaccine augments sera neutralization of Omicron sub-variants BA.1/BA.2/BA.2.12.1/BA.4/BA.5. Emerg Microbes Infect. 2023;12(1):e2179357. doi: 10.1080/22221751.2023.2179357
  • Takashita E, Yamayoshi S, Simon V, et al. Efficacy of antibodies and antiviral Drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants. N Engl J Med. 2022;387(5):468–470. doi: 10.1056/NEJMc2207519
  • Zhang G, Cong Y, Liu FL. et al. A nanomaterial targeting the spike protein captures SARS-CoV-2 variants and promotes viral elimination. Nat Nanotechnol. 2022;17(9):993–1003. doi: 10.1038/s41565-022-01177-2
  • Li P, Wang Y, Lavrijsen M, et al. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res. 2022;32(3):322–324. doi: 10.1038/s41422-022-00618-w
  • Arbel R, Wolff Sagy Y, Hoshen M, et al. Nirmatrelvir use and severe COVID-19 Outcomes during the Omicron surge. N Engl J Med. 2022;387(9):790–798. doi: 10.1056/NEJMoa2204919
  • Vangeel L, Chiu W, De Jonghe S, et al. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antivir Res. 2022;198:105252. doi: 10.1016/j.antiviral.2022.105252
  • VanBlargan LA, Errico JM, Halfmann PJ, et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat Med. 2022;28(3): 490–495. doi: 10.1038/s41591-021-01678-y
  • Escalera A, Gonzalez-Reiche AS, Aslam S, et al. Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host Microbe. 2022;30(3):373–387. doi: 10.1016/j.chom.2022.01.006
  • Newman J, Thakur N, Peacock TP, et al. Neutralizing antibody activity against 21 SARS-CoV-2 variants in older adults vaccinated with BNT162b2. Nat Microbiol. 2022;7(8):1180–1188. doi: 10.1038/s41564-022-01163-3
  • Yue C, Song W, Wang L, et al. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. Lancet Infect Dis. 2023;23(3):278–280. doi: 10.1016/S1473-3099(23)00010-5
  • Tamura T, Ito J, Uriu K, et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. bioRxiv. 2022. doi: 10.1101/2022.12.27.521986
  • Uriu K, Ito J, Zahradnik J, et al. Enhanced transmissibility, infectivity, and immune resistance of the SARS-CoV-2 omicron XBB.1.5 variant. Lancet Infect Dis. 2023;23(3):280–281. doi: 10.1016/S1473-3099(23)00051-8
Еще
Статья обзорная