Верификация конечно-элементного решения трехмерных нестационарных задач упругопластического деформирования, устойчивости и закритического поведения оболочек

Автор: Артемьева Анастасия Анатольевна, Баженов Валентин Георгиевич, Кибец Александр Иванович, Лаптев Павел Владимирович, Шошин Дмитрий Викторович

Журнал: Вычислительная механика сплошных сред @journal-icmm

Статья в выпуске: 2 т.3, 2010 года.

Бесплатный доступ

Приводится конечно-элементная методика анализа в трехмерной постановке квазистатических и динамических процессов упругопластического деформирования, потери устойчивости и закритического поведения конструкций, включающих тонкостенные оболочки. Эффективность методики подтверждается результатами верификационных расчетов.

Метод конечных элементов, верификация, упругопластичность, нестационарные задачи, оболочки

Короткий адрес: https://sciup.org/14320512

IDR: 14320512

Список литературы Верификация конечно-элементного решения трехмерных нестационарных задач упругопластического деформирования, устойчивости и закритического поведения оболочек

  • Голованов А.И., Тюленева О.Н., Шигабутдинов А.Ф. Метод конечных элементов в статике и динамике тонкостенных конструкций. -М.: ФИЗМАТЛИТ, 2006. -391 с.
  • Belytschko T., Liu W.K., Moran B. Nonlinear finite elements for continua and structures. -New York: John Wiley & Sons, 2000. -600 p.
  • Bathe K.-Y. Finite element procedures. -New Jersey: Upper Saddle River «Prentice Hall», 1996. -1037p.
  • Zienkievicz O.C., Taylor R.L. The finite element method. -Oxford: Butterworth-Heinemann, 2000. -V. 1. -689 p.; V. 2. -459 p.
  • Поздеев А.А., Трусов П.В., Няшин Ю.И. Большие упругопластические деформации: теория, алгоритмы, приложения. -М.: Наука, 1986. -232 с.
  • Коробейников С.Н. Нелинейное деформирование твердых тел. -Новосибирск: Изд-во СО РАН, 2000. -262 с.
  • Баженов В.Г., Кибец А.И., Цветкова И.Н. Численное моделирование нестационарных процессов ударного взаимодействия деформируемых элементов конструкций//Проблемы машиностроения и надежности машин, 1995. -№ 2. -С. 20-26.
  • Вольмир А.С. Нелинейная динамика пластин и оболочек. -М.: Наука, 1972. -432 с.
  • Flanagan D.P., Belytschko T. A Uniform strain hexahedron and quadrilateral with orthogonal hourglass control//Int. J. Numer. Meth. Eng., 1981. -V. 17. -P. 679-706.
  • Уилкинс М., Френч С., Сорем М. Конечно-разностная схема для решения задач, зависящих от трех пространственных координат и времени//Численные методы в механике жидкостей. -М.: Мир, 1973. -С. 115-119.
  • Коробейников С.Н., Шутов А.В. Выбор отсчетной поверхности в уравнениях пластин и оболочек//Вычислительные технологии, 2003. -Т. 8, № 6. -С. 38-59.
  • Метод конечных элементов в механике твердых тел/Под ред. А.С. Сахарова и И. Альтенбаха. -Киев: Вища школа; Лейпциг: ФЕБ Фахбухферлаг, 1982. -480 с.
  • Программный продукт «Пакет прикладных программ для решения трехмерных задач нестационарного деформирования конструкций, включающих массивные тела и оболочки, «Динамика-3» (ППП «Динамика 3»): Сертификат соответствия Госстандарта России № РОСС RU.ME20.H00338/2000.
  • Баженов В.Г., Ломунов В.К. Экспериментально-теоретическое исследование упругопластического выпучивания цилиндрических оболочек при осевом ударе//Прикладная механика, 1983. -Т. 19, № 6. -С. 63-69.
  • Абакумов А.И., Квасков Г.А., Новиков С.А., Синицын В.А., Учаев А.А. Исследование упругопластического деформирования цилиндрических оболочек при осевом ударе//ПМТФ, 1988. -№ 3. -С. 150-153.
  • Коробейников С.Н. Численное решение уравнений с особенностями деформирования упругопластических оболочек вращения//Вычислительные технологии, 2001. -Т. 6, № 5. -С. 39-59.
  • Деменко П.В. Установка для динамических испытаний структурно-неоднородных материалов на основе разрезного стержня Гопкинсона диаметром 60 мм//Проблемы прочности и пластичности. -Н. Новгород, 2001. -Вып. 63. -С. 186-190.
  • Zeng Q., Combescure A. A new one-point quadrature, general non-linear quadrilateral shell element with physical stabilization//Int. J. Numer. Meth. Eng., 1998. -N. 42. -P. 1307-1338.
Еще
Статья научная