Влияние различных классов танинов на метаногенез у жвачных животных (обзор)
Автор: Колесник Н.С., Боголюбова Н.В., Зеленченкова А.А.
Журнал: Сельскохозяйственная биология @agrobiology
Рубрика: Обзоры, проблемы
Статья в выпуске: 2 т.59, 2024 года.
Бесплатный доступ
К источникам парниковых газов часто относят жвачных животных, что становится актуальной экологической проблемой. Среди газов, с которыми связывают глобальное потепление, наибольшим потенциалом обладает метан (R.A. Muller с соавт., 2017). Сокращение эмиссии CН4 с кишечными газами поможет повысить эффективность использования энергии и снизить нагрузку на окружающую среду от сельского хозяйства (И.В. Петрунина с соавт., 2022). Существует несколько стратегий по снижению выбросов парниковых газов от жвачных животных, в частности через изменение рационов и использование различных кормовых добавок (Н.В. Боголюбова с соавт., 2022), включая жировые. Ненасыщенные жирные кислоты подавляют развитие метаногенов и простейших и снижают соотношение ацетат:пропионат в рубце, что приводит к уменьшению выработки метана (J.O. Zeitz с соавт., 2013). Другая многообещающая стратегией для сокращения выбросов метана жвачными - использование в качестве кормовой добавки вторичных метаболитов растений, в частности танинов, обладающих антиметаногенным потенциалом, выраженными антиоксидантными, антимикробными свойствами, а также способностью образовывать комплексы преимущественно с белками и некоторыми микроэлементами благодаря наличию большого количества фенольных гидроксильных групп (A.I. Roca-Fernández с соавт., 2020, P.R. Lima с соавт., 2019). Это высокомолекулярные полифенольные соединения, которые можно разделить на две группы - конденсированные и гидролизуемые танины (A.K. Patra с соавт., 2010). Их биологическая активность во многом зависит от химической структуры и дозировки. Гидролизуемые танины в отличие от конденсированных при высоких концентрациях обладают токсическим эффектом. Механизм их действия до конца не изучен. Одна из гипотез заключается в том, что танины воздействуют непосредственно на метаногены в рубце, изменяя проницаемость мембран некоторых микроорганизмов рубца и ингибируя их ферментативную активность (M.И. Caetano с соавт., 2019). Другая гипотеза предполагает ингибирование за счет уменьшения доступности питательных веществ для микроорганизмов рубца, что впоследствии снижает усвояемость субстрата и косвенно ингибирует микробные популяции (H.D. Naumann с соавт., 2017). Согласно еще одной гипотезе о том, как танины, а именно конденсированные танины, ингибируют CH4, они действуют как поглотитель протонов (H.D. Naumann с соавт., 2017). В настоящее время изучается влияние различных классов танинов на рубцовую микробиоту и процесс метаногенеза. Многочисленные исследования in vitro и in vivo показывают, что включение танинов в рацион жвачных животных (с растениями или в виде растительных экстрактов) приводит к снижению выделения CH4 (F. Hassanat с соавт., 2013, H.M. El-Zaiat с соавт., 2020). В некоторых работах также оценивается влияние смеси конденсированных и гидролизуемых танинов на характер ферментации в рубце (C.J. Marshall с соавт., 2022).
Гидролизуемые танины, конденсированные танины, метаногенез, микробиом рубца, жвачные животные
Короткий адрес: https://sciup.org/142242442
IDR: 142242442 | DOI: 10.15389/agrobiology.2024.2.221rus
Список литературы Влияние различных классов танинов на метаногенез у жвачных животных (обзор)
- Cardoso-Gutierrez E., Aranda-Aguirre E., Robles-Jimenez L.E., Castelán-Ortega O.A., Chay-Canul A.J., Foggi G., Angeles-Hernandez J.C., Vargas-Bello-Pérez E., González-Ronquillo M. Effect of tannins from tropical plants on methane production from ruminants: a systematic review. Veterinary and Animal Science, 2021, 14: 100214 (doi: 10.1016/j.vas.2021.100214).
- Cardona-Iglesias J.L., Mahecha-Ledesma L., Angulo-Arizala J. Arbustivas forrajeras y ácidos grasos: estrategias para disminuir la producción de metano entérico en bovinos. Agronomía Mesoamericana, 2017, 28(1): 273-288 (doi: 10.15517/am.v28i1.21466).
- Eugène M., Klumpp K., Sauvant D. Methane mitigating options with forages fed to ruminants. Grass and Forage Science, 2021, 76(2): 196-204 (doi: 10.1111/gfs.12540).
- Audsley E., Wilkinson M. What is the potential for reducing national greenhouse gas emissions from crop and livestock production systems? Journal of Cleaner Production, 2014, 73: 263-268 (doi: 10.1016/j.jclepro.2014.01.066).
- Slade E.M., Riutta T., Roslin T., Tuomisto H.L. The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Scientific Reports, 2016, 6(1): 1-9 (doi: 10.1038/srep18140).
- Gerber P.J., Hristov A.N., Henderson B., Makkar H., Oh J., Lee C., Meinen R., Montes F., Ott T., Firkins J., Rotz A., Dell C., Adesogan A.T., Yang W. Z., Tricarico J.M., Kebreab E., Waghorn G., Dijkstra J., Oosting S. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal, 2013, 7(s2): 220-234 (doi: 10.1017/S1751731113000876).
- Vargas J., Ungerfeld E., Muñoz C., DiLorenzo N. Feeding strategies to mitigate enteric methane emission from ruminants in grassland systems. Animals, 2022, 12(9): 1132 (doi: 10.3390/ani12091132).
- Focant M., Froidmont E., Archambeau Q., Van Q.D., Larondelle Y. The effect of oak tannin (Quercus robur) and hops (Humulus lupulus) on dietary nitrogen efficiency, methane emission, and milk fatty acid composition of dairy cows fed a low-protein diet including linseed. Journal of Dairy Science, 2019, 102(2): 1144-1159 (doi: 10.3168/jds.2018-15479).
- Eckard R.J., Grainger C., de Klein C.A.M. Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livestock Science, 2010, 130(1-3): 47-56 (doi: 10.1016/j.livsci.2010.02.010).
- Dijkstra J., Oenema O., Van Groenigen J.W., Spek J.W., van Vuuren A.M., Bannink A. Diet effects on urine composition of cattle and N2O emissions. Animal, 2013, 7(s2): 292-302 (doi: 10.1017/S1751731113000578).
- Федоров Ю.А., Сухоруков В.В., Трубник Р.Г. Аналитический обзор: эмиссия и поглощение парниковых газов почвами. Экологические проблемы. Антропогенная трансформация природной среды, 2021, 7(1): 6-34 (doi: 10.17072/2410-8553-2021-1-6-34).
- Muller R.A., Muller E.A. Fugitive methane and the role of atmospheric half-life. Geoinformatics & Geostatistics: An Overview, 2017, 5(3): 1-7 (doi: 10.4172/2327-4581.1000162).
- Ugbogu E.A., Elghandour M.M.M.Y., Ikpeazu V.O., Buendía G.R., Molina O.M., Arunsi U.O., Okezie E., Salem A.Z.M. The potential impacts of dietary plant natural products on the sustainable mitigation of methane emission from livestock farming. Journal of Cleaner Production, 2019, 213: 915-925 (doi: 10.1016/j.jclepro.2018.12.233).
- Елисеев А.В. Глобальный цикл метана: обзор. Фундаментальная и прикладная климатология, 2018, 1: 52-70 (doi: 10.21513/2410-8758-2018-1-52-70).
- Rira M., Chentli A., Boufenera S., Bousseboua H. Effects of plants containing secondary metabolites on ruminal methanogenesis of sheep in vitro. Energy Procedia, 2015, 74: 15-24 (doi: 10.1016/j.egypro.2015.07.513).
- Dong L.F., Ferris C.P., McDowell D.A., Yan T. Effects of diet forage proportion on maintenance energy requirement and the efficiency of metabolizable energy use for lactation by lactating dairy cows. Journal of Dairy Science, 2015, 98(12): 8846-8855 (doi: 10.3168/jds.2015-9465).
- Hristov A.N., Oh J., Giallongo F., Frederick T.W., Harper M.T., Weeks H.L., Branco A.F., Moate P.J., Deighton M.H., Williams S.R.O., Kindermann M., Duval S. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences, 2015, 112(34): 10663-10668 (doi: 10.1073/pnas.1504124112).
- Bhatta R., Uyeno Y., Tajima K., Takenaka A., Yabumoto Y., Nonaka I., Enishi O., Kurihara M. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. Journal of Dairy Science, 2009, 92(11): 5512-5522 (doi: 10.3168/jds.2008-1441).
- Dong L., Li B., Diao Q. Effects of dietary forage proportion on feed intake, growth performance, nutrient digestibility, and enteric methane emissions of Holstein heifers at various growth stages. Animals, 2019, 9(10): 725 (doi: 10.3390/ani9100725).
- Петрунина И.В., Горбунова Н.А. Системные меры по снижению выбросов парниковых газов в животноводческих хозяйствах. Обзор. Пищевые системы, 2022, 5(3): 202-211 (doi: 10.21323/2618-9771-2022-5-3-202-211).
- Henderson G., Cox F., Ganesh S., Jonker A., Young W., Janssen P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, 2015, 5(1): 14567 (doi: 10.1038/srep14567).
- Henderson G., Cook G.M., Ronimus R.S. Enzyme- and gene-based approaches for developing methanogen-specific compounds to control ruminant methane emissions: a review. Animal Production Science, 2016, 58(6): 1017-1026 (doi: 10.1071/AN15757).
- Seshadri R., Leahy S.C., Attwood G.T., Teh K.H., Lambie S.C., Cookson A.L, Eloe-Fadrosh E.A., Pavlopoulos G.A., Hadjithomas M., Varghese N.J., Paez-Espino D., Hungate1000 project collaborators, Perry R., Henderson G., Creevey C.J., Terrapon N., Lapebie P., Drula E., Lombard V., Rubin E., Kyrpides N.C., Henrissat B., Woyke T., Ivanova N.N., Kelly W.J. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nature biotechnology, 2018, 36(4): 359-367 (doi: 10.1038/nbt.4110).
- Ungerfeld E.M. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Frontiers in Microbiology, 2020, 11: 589 (doi: 10.3389/fmicb.2020.00589).
- Morgavi D.P., Forano E., Martin C., Newbold C.J. Microbial ecosystem and methanogenesis in ruminants. Animal, 2010, 4(7): 1024-1036 (doi: 10.1017/S1751731110000546).
- Beauchemin K.A., Ungerfeld E.M., Eckard R.J., Wang M. Review: Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal, 2020, 14(S1): s2-s16 (doi: 10.1017/S1751731119003100).
- Eckard R.J., Clark H. Potential solutions to the major greenhouse-gas issues facing Australasian dairy farming. Animal Production Science, 2018, 60(1): 10-16 (doi: 10.1071/AN18574).
- Arndt C., Hristov A.N., Price W.J., McClelland S.C., Pelaez A.M., Cueva S.F., Dijkstra J., Bannink A., Bayat A.R., Crompton L.A., Eugène M.A., Enahoro D., Kebreab E., Kreuzer M., McGee M., Martin C., Newbold C.J., Reynolds C.K., Schwarm A., Shingfield K.J., Veneman J.B., Yáñez-Ruiz D.R., Yu Z. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 C target by 2030 but not 2050. Proceedings of the National Academy of Sciences, 2022, 119(20): e2111294119 (doi: 10.1073/pnas.2111294119).
- Hristov A.N., Oh J., Firkins J.L., Dijkstra J., Kebreab E., Waghorn G., Makkar H.P.S., Adesogan A.T., Yang W., Lee C., Gerber P.J., Henderson B., Tricarico J.M. Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Animal Science, 2013, 91(11): 5045-5069 (doi: 10.2527/jas.2013-6583).
- Боголюбова Н.В., Зеленченкова А.А., Колесник Н.С., Лахонин П.С. Метанообразование в рубце и методы его снижения с использованием алиментарных факторов (обзор). Сельскохозяйственная биология, 2022, 57(6): 1025-1054 (doi: 10.15389/agrobiology.2022.6.1025rus).
- Knapp J.R., Laur G.L., Vadas P.A., Weiss W.P., Tricarico J.M. Invited review: Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 2014, 97(6): 3231-3261 (doi: 10.3168/jds.2013-7234).
- Almeida A.K., Hegarty R.S., Cowie A. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems. Animal Nutrition, 2021, 7(4): 1219-1230 (doi: 10.1016/j.aninu.2021.09.005).
- Chow J.M., Van Kessel J.A.S., Russell J.B. Binding of radiolabeled monensin and lasalocid to ruminal microorganisms and feed. Journal of Animal Science, 1994, 72(6): 1630-1635 (doi: 10.2527/1994.7261630x).
- Grainger C., Williams R., Eckard R.J., Hannah M.C. A high dose of monensin does not reduce methane emissions of dairy cows offered pasture supplemented with grain. Journal of Dairy Science, 2010, 93(11): 5300-5308 (doi: 10.3168/jds.2010-3154).
- Benchaar C. Diet supplementation with cinnamon oil, cinnamaldehyde, or monensin does not reduce enteric methane production of dairy cows. Animal, 2016, 10(3): 418-425 (doi: 10.1017/S175173111500230X).
- da Silva Marques R., Cooke R.F. Effects of ionophores on ruminal function of beef cattle. Animals, 2021, 11(10): 2871 (doi: 10.3390/ani11102871).
- Jouany J.-P., Morgavi D.P. Use of ‘natural’products as alternatives to antibiotic feed additives in ruminant production. Animal, 2007, 1(10): 1443-1466 (doi: 10.1017/S1751731107000742).
- Witzig M., Zeder M., Rodehutscord M. Effect of the ionophore monensin and tannin extracts supplemented to grass silage on populations of ruminal cellulolytics and methanogens in vitro. Anaerobe, 2018, 50: 44-54 (doi: 10.1016/j.anaerobe.2018.01.012).
- Mao H.-L., Wang J.-K., Zhou Y.-Y., Liu J.-X. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livestock Science, 2010, 129(1-3): 56-62 (doi: 10.1016/j.livsci.2009.12.011).
- Zeitz J.O., Bucher S., Zhou X., Meile L., Kreuzer M., Soliva C.R. Inhhibitory effects of saturated fatty acids on methane production by methanogenic Archaea. Journal of Animal and Feed Sciences, 2013, 22(1): 44-49 (doi: 10.22358/jafs/66015/2013).
- Guyader J., Eugène M., Doreau M., Morgavi D.P., Gérard C., Loncke C., Martin C. Nitrate but not tea saponin feed additives decreased enteric methane emissions in nonlactating cows. Journal of Animal Science, 2015, 93(11): 5367-5377 (doi: 10.2527/jas.2015-9367).
- Guyader J., Eugène M., Meunier B., Doreau M., Morgavi D.P., Silberberg M., Rochette Y., Gerard C., Loncke C., Martin C. Additive methane-mitigating effect between linseed oil and nitrate fed to cattle. Journal of Animal Science, 2015, 93(7): 3564-3577 (doi: 10.2527/jas.2014-8196).
- Ungerfeld E.M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Frontiers in Microbiology, 2015, 6: 37 (doi: 10.3389/fmicb.2015.00037).
- Grainger C., Beauchemin K.A. Can enteric methane emissions from ruminants be lowered without lowering their production? Animal Feed Science and Technology, 2011, 166-167: 308-320 (doi: 10.1016/j.anifeedsci.2011.04.021).
- Martin C., Morgavi D.P., Doreau M. Methane mitigation in ruminants: from microbe to the farm scale. Animal, 2010, 4(3): 351-365 (doi: 10.1017/S1751731109990620).
- Doreau M., Bauchart D., Chilliard Y. Enhancing fatty acid composition of milk and meat through animal feeding. Animal Production Science, 2010, 51(1): 19-29 (doi: 10.1071/AN10043).
- Livingstone K.M., Humphries D.J., Kirton P., Kliem K.E., Givens D.I., Reynolds C.K. Effects of forage type and extruded linseed supplementation on methane production and milk fatty acid composition of lactating dairy cows. Journal of Dairy Science, 2015, 98(6): 4000-4011 (doi: 10.3168/jds.2014-8987).
- Martin C., Ferlay A., Mosoni P., Rochette Y., Chilliard Y., Doreau M. Increasing linseed supply in dairy cow diets based on hay or corn silage: Effect on enteric methane emission, rumen microbial fermentation, and digestion. Journal of Dairy Science, 2016, 99(5): 3445-3456 (doi: 10.3168/jds.2015-10110).
- Fiorentini G., Carvalho I.P.C., Messana J.D., Castagnino P.S., Berndt A., Canesin R.C., Frighetto R.T.S., Berchielli T.T. Effect of lipid sources with different fatty acid profiles on the intake, performance, and methane emissions of feedlot Nellore steers. Journal of Animal Science, 2014, 92(4): 1613-1620 (doi: 10.2527/jas.2013-6868).
- Carvalho I.P.C., Fiorentini G., Berndt A., Castagnino P.D.S., Messana J.D., Frighetto R.T.S., Reis R.A., Berchielli T.T. Performance and methane emissions of Nellore steers grazing tropical pasture supplemented with lipid sources. Revista Brasileira de Zootecnia, 2016, 45(12): 760-767 (doi: 10.1590/S1806-92902016001200005).
- Guyader J., Doreau M., Morgavi D.P., Gérard C., Loncke C., Martin C. Long-term effect of linseed plus nitrate fed to dairy cows on enteric methane emission and nitrate and nitrite residuals in milk. Animal, 2016, 10(7): 1173-1181 (doi: 10.1017/S1751731115002852).
- Jose Neto A., Messana J.D., Ribeiro A.F., Vito E.S., Rossi L.G., Berchielli T.T. Effect of starchbased supplementation level combined with oil on intake, performance, and methane emissions of growing Nellore bulls on pasture. Journal of Animal Science, 2015, 93(5): 2275-2284 (doi: 10.2527/jas.2014-8500).
- Jose Neto A., Messana J.D., Rossi L.G., Carvalho I.P.C., Berchielli T.T. Methane emissions from Nellore bulls on pasture fed two levels of starch-based supplement with or without a source of oil. Animal Production Science, 2018, 59(4): 654-663 (doi: 10.1071/AN16095).
- Silva R.A., Fiorentini G., Messana J.D., Lage J.F., Castagnino P.S., San Vito E., Carvalho I.P.C., Berchielli T.T. Effects of different forms of soybean lipids on enteric methane emission, perfor-mance and meat quality of feedlot Nellore. The Journal of Agricultural Science, 2018, 156(3): 427-436 (doi: 10.1017/S002185961800045X).
- Roca-Fernández A.I., Dillard S.L., Soder K.J. Ruminal fermentation and enteric methane pro-duction of legumes containing condensed tannins fed in continuous culture. Journal of Dairy Science, 2020, 103(8): 7028-7038 (doi: 10.3168/jds.2019-17627).
- Рязанов В.А., Шейда Е.В., Дускаев Г.К., Рахматуллин Ш.Г., Кван О.В. Оценка воздействия фитобиотических препаратов Salviae folia, Scutellaria baicalensis, Origanum vul-gare на обменные процессы в модели рубца. Аграрная наука, 2022, 1(7-8): 86-92 (doi: 10.32634/0869-8155-2022-361-7-8-86-92).
- Atlanderova K., Makaeva A., Rysaev A., Nurzhanov B., Duskaev G., Rayzanov V. The effect of medicinal extracts on microflora and enzymatic processes of calf rumen. Journal of Animal Sci-ence, 2020, 98(Suppl_4): 258 (doi: 10.1093/jas/skaa278.466).
- Kumar R., Kumar B.A. New claims in folk veterinary medicines from Uttar Pradesh, India. J. Ethnopharmacol, 2013, 146(2): 581-593 (doi: 10.1016/j.jep.2013.01.030).
- Cobellis G., Trabalza-Marinucci M., Yu Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: a review. Science of the Total Environment, 2016, 545: 556-568 (doi: 10.1016/j.scitotenv.2015.12.103).
- Jacondino L.R., Poli C H.E.C., Tontini J.F., Corrêa G.F., Somacal S., Mello R.O., Leal M.L.R., Raimondo R.F.S., Riet-Correa B., Muir J.P. Acacia mearnsii tannin extract and -tocopherol sup-plementation in lamb diet: effects on growth performance, serum lipid peroxidation and meat quality. Animal Feed Science and Technology, 2022, 294: 115483 (doi: 10.1016/j.anifeedsci.2022.115483).
- Lobón S., Sanz A., Blanco M., Ripoll G., Joy M. The type of forage and condensed tannins in dams’ diet: Influence on meat shelf life of their suckling lambs. Small Ruminant Research, 2017, 154: 115-122 (doi: 10.1016/j.smallrumres.2017.08.005).
- Mueller-Harvey I., Bee G., Dohme-Meier F., Hoste H., Karonen M., Kölliker, R., Luscher A., Niderkorn V., Pellikaan W.F., Salminen J.P., Skot L., Smith L.M.J., Thamsborg S.M., Totter-dell P., Wilkinson I., Williams A.R., Azuhnwi B.N., Baert N., Brinkhaus A.G., Copani G., Desrues O., Drake C., Engstrom M., Fryganas C., Girard M., Huyen N.T., Kempf K., Ma-lisch C., Mora-Ortiz M., Quijada J., Ramsay A., Ropiak H.M., Waghorn G.C. Benefits of con-densed tannins in forage legumes fed to ruminants: importance of structure, concentration, and diet composition. Crop Science, 2019, 59(3): 861-885 (doi: 10.2135/cropsci2017.06.0369).
- Hoste H., Torres-Acosta J.F.J., Quijada J., Chan-Perez I., Dakheel M.M., Kommuru D.S., Mueller-Harvey I., Terrill T.H. Interactions between nutrition and infections with Haemonchus contortus and related gastrointestinal nematodes in small ruminants. Advances in Parasitology, 2016, 93: 239-351 (doi: 10.1016/bs.apar.2016.02.025).
- MacAdam J.W., Villalba J.J. Beneficial effects of temperate forage legumes that contain con-densed tannins. Agriculture, 2015, 5(3): 475-491 (doi: 10.3390/agriculture5030475).
- Junior F.P., Cassiano E.C.O., Martins M.F., Romero L.A., Zapata D.C.V., Pinedo L.A., Ma-rino C.T., Rodrigues P.H.M. Effect of tannins-rich extract from Acacia mearnsii or monensin as feed additives on ruminal fermentation efficiency in cattle. Livestock Science, 2017, 203, 21-29 (doi: 10.1016/j.livsci.2017.06.009).
- Marshall C.J., Beck M.R., Garrett K., Castillo A.R., Barrell G.K., Al-Marashdeh O., Gre-gorini P. The effect of feeding a mix of condensed and hydrolyzable tannins to heifers on rumen fermentation patterns, blood urea nitrogen, and amino acid profile. Livestock Science, 2022, 263: 105034 (doi: 10.1016/j.livsci.2022.105034).
- Makmur M., Zain M., Sholikin M.M., Suharlina, Jayanegara A. Modulatory effects of dietary tannins on polyunsaturated fatty acid biohydrogenation in the rumen: a meta-analysis. Heliyon, 2022, 8(7): e09828 (doi: 10.1016/j.heliyon.2022.e09828).
- Hagerman A.E. Fifty years of polyphenol—protein complexes. In: Recent Advances in Polyphenol Research /S. Quideau, V. Cheynier, P. Sarni-Manchado, S. Quideau (eds.). John Wiley & Sons, 2012, vol. 3: 71-97 (doi: 10.1002/9781118299753.ch3).
- Lima P.R., Apdini T., Freire A.S., Santana A.S., Moura L.M.L., Nascimento J.C.S., Ro-drigues R.T.S., Dijkstra J., Garcez Neto A.F., Queiroz M.A.Á., Menezes D.R. Dietary supple-mentation with tannin and soybean oil on intake, digestibility, feeding behavior, ruminal protozoa and methane emission in sheep. Animal Feed Science and Technology, 2019, 249: 10-17 (doi: 10.1016/j.anifeedsci.2019.01.017).
- Patra A.K., Saxena J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry, 2010, 71(11-12): 1198-1222 (doi: 10.1016/j.phyto-chem.2010.05.010).
- Terranova M., Kreuzer M., Braun U., Schwarm A. In vitro screening of temperate climate forages from a variety of woody plants for their potential to mitigate ruminal methane and ammonia formation. The Journal of Agricultural Science, 2018, 156(7): 929-941 (doi: 10.1017/S0021859618000989).
- Rira M., Morgavi D.P., Popova M., Maxin G., Doreau, M. Microbial colonisation of tannin-rich tropical plants: interplay between degradability, methane production and tannin disappear-ance in the rumen. Animal, 2022, 16(8): 100589 (doi: 10.1016/j.animal.2022.100589).
- Naumann H.D., Tedeschi L.O., Zeller W.E., Huntley N.F. The role of condensed tannins in ruminant animal production: advances, limitations and future directions. Revista Brasileira de Zootecnia, 2017, 46(12): 929-949 (doi: 10.1590/S1806-92902017001200009).
- Díaz Carrasco J.M., Cabral C., Redondo L.M., Pin Viso N.D., Colombatto D., Farber M.D., Fernandez Miyakawa M.E. Impact of chestnut and quebracho tannins on rumen microbiota of bovines. BioMed Research International, 2017, 2017(3): 1-11 (doi: 10.1155/2017/9610810).
- Vasta V., Daghio M., Cappucci A., Buccioni A., Serra A., Viti C., Mele M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: experimental evidence and methodological approaches. Journal of Dairy Science, 2019, 102(5): 3781-3804 (doi: 10.3168/jds.2018-14985).
- Mannino G., Chinigò G., Serio G., Genova T., Gentile C., Munaron L., Bertea C.M. Proan-thocyanidins and where to find them: a meta-analytic approach to investigate their chemistry, biosynthesis, distribution, and effect on human health. Antioxidants, 2021, 10(8): 1229 (doi: 10.3390/antiox10081229).
- Mannino G., Gentile C., Ertani A., Serio G., Bertea C.M. Anthocyanins: biosynthesis, distribu-tion, ecological role, and use of biostimulants to increase their content in plant foods — a review. Agriculture, 2021, 11(3): 212 (doi: 10.3390/agriculture11030212).
- Jayanegara A., Goel G., Makkar H.P., Becker K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Animal Feed Science and Technology, 2015, 209: 60-68 (doi: 10.1016/j.anifeedsci.2015.08.002).
- Salami S.A., Valenti B., Bella M., O'Grady M.N., Luciano G., Kerry J.P., Jones E., Priolo A., Newbold C.J. Characterisation of the ruminal fermentation and microbiome in lambs supple-mented with hydrolysable and condensed tannins. FEMS Microbiology Ecology, 2018, 94(5): fiy061 (doi: 10.1093/femsec/fiy061).
- Caetano M., Wilkes M.J., Pitchford W.S., Lee S.J., Hynd P.I. Effect of ensiled crimped grape marc on energy intake, performance and gas emissions of beef cattle. Animal Feed Science and Technology, 2019, 247: 166-172 (doi: 10.1016/j.anifeedsci.2018.10.007).
- Ng F., Kittelmann S., Patchett M.L., Attwood G.T., Janssen P.H., Rakonjac J., Gagic D. An adhesin from hydrogen‐utilizing rumen methanogen M ethanobrevibacter ruminantium M 1 binds a broad range of hydrogen‐producing microorganisms. Environmental Microbiology, 2016, 18(9): 3010-3021 (doi: 10.1111/1462-2920.13155).
- Bhatta R., Saravanan M., Baruah L., Prasad C.S. Effects of graded levels of tannin‐containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. Jour-nal of Applied Microbiology, 2015 118(3): 557-564 (doi: 10.1111/jam.12723).
- Costa M., Alves S.P., Cabo Â., Guerreiro O., Stilwell G., Dentinho M.T., Bessa R.J. Modulation of in vitro rumen biohydrogenation by Cistus ladanifer tannins compared with other tannin sources. Journal of the Science of Food and Agriculture, 2018, 97(2): 629-635 (doi: 10.1002/jsfa.7777).
- Cappucci A., Mantino A., Buccioni A., Casarosa L., Conte G., Serra A., Mannelli F., Luci-ano G., Foggi G., Mele M. Diets supplemented with condensed and hydrolysable tannins af-fected rumen fatty acid profile and plasmalogen lipids, ammonia and methane production in an in vitro study. Italian Journal of Animal Science, 2021, 20(1): 935-946 (doi: 10.1080/1828051X.2021.1915189).
- Mannelli F., Daghio M., Alves S.P., Bessa R.J., Minieri S., Giovannetti L., Conte G., Mele M., Messini A., Rapaccini S., Viti C., Buccioni A. Effects of chestnut tannin extract, vescalagin and gallic acid on the dimethyl acetals profile and microbial community composition in rumen liquor: an in vitro study. Microorganisms, 2019, 7(7): 202 (doi: 10.3390/microorganisms7070202).
- Lavin S.R. Plant phenolics and their potential role in mitigating iron overload disorder in wild animals. Journal of Zoo and Wildlife Medicine, 2012, 43(3s): 74-82 (doi: 10.1638/2011-0132.1).
- Saminathan M., Tan H.Y., Sieo C.C., Abdullah N., Wong C.M.V.L., Abdulmalek E., Ho Y.W. Polymerization degrees, molecular weights and protein-binding affinities of condensed tannin fractions from a Leucaena leucocephala hybrid. Molecules, 2014, 19(6): 7990-8010 (doi: 10.3390/molecules19067990).
- Min B.R., Wright C., Ho P., Eun J.-S., Gurung N., Shange R. The effect of phytochemical tannins-containing diet on rumen fermentation characteristics and microbial diversity dynamics in goats using 16S rDNA amplicon pyrosequencing. Agriculture, Food and Analytical Bacteriology, 2014, 4(195-211): 141909.
- Gemeda B.S., Hassen A. Effect of tannin and species variation on in vitro digestibility, gas, and methane production of tropical browse plants. Asian-Australasian Journal of Animal Sciences, 2015, 28(2): 188-199 (doi: 10.5713/ajas.14.0325).
- Li Z., Wright A.-D.G., Liu H., Fan Z., Yang F., Zhang Z., Li G. Response of the rumen microbiota of sika deer (Cervus nippon) fed different concentrations of tannin rich plants. PLoS ONE, 2015, 10(5): e0123481 (doi: 10.1371/journal.pone.0123481).
- Hassanat F., Benchaar C. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. Journal of the Science of Food and Agriculture, 2013, 93(2): 332-339 (doi: 10.1002/jsfa.5763).
- Terranova M., Wang S., Eggerschwiler L., Braun U., Kreuzer M., Schwarm A. Dose-response effects of woody and herbaceous forage plants on in vitro ruminal methane and ammonia for-mation, and their short-term palatability in lactating cows. Animal, 2020, 14(3): 538-548 (doi: 10.1017/S1751731119002076).
- Terranova M., Eggerschwiler L., Ortmann S., Clauss M., Kreuzer M., Schwarm A. Increasing the proportion of hazel leaves in the diet of dairy cows reduced methane yield and excretion of nitrogen in volatile form, but not milk yield. Animal Feed Science and Technology, 2021, 276: 114790 (doi: 10.1016/j.anifeedsci.2020.114790).
- Wang S., Terranova M., Kreuzer M., Marquardt S., Eggerschwiler L., Schwarm A. Supplemen-tation of pelleted hazel (Corylus avellana) leaves decreases methane and urinary nitrogen emissions by sheep at unchanged forage intake. Scientific Reports, 2018, 8(1): 5427 (doi: 10.1038/s41598-018-23572-3).
- El-Zaiat H.M., Kholif A.E., Moharam M.S., Attia M.F., Abdalla A.L., Sallam S.M.A. The ability of tanniniferous legumes to reduce methane production and enhance feed utilization in Barki rams: in vitro and in vivo evaluation. Small Ruminant Research, 2020, 193: 106259 (doi: 10.1016/j.smallrumres.2020.106259).
- Ku-Vera J.C., Jiménez-Ocampo R., Valencia-Salazar S.S., Montoya-Flores M.D., Molina-Bo-tero I.C., Arango J., Gómez-Bravo C.A., Aguilar-Pérez C.F., Solorio-Sánchez F.J. Role of sec-ondary plant metabolites on enteric methane mitigation in ruminants. Frontiers in Veterinary Sci-ence, 2020, 7: 584 (doi: 10.3389/fvets.2020.00584).
- Piñeiro-Vázquez A.T., Canul-Solis J.R., Jiménez-Ferrer G.O., Alayón-Gamboa J.A., Chay-Canul A.J., Ayala-Burgos A.J., Aguilar-Pérez C.F., Ku-Vera J.C. Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of ru-men protozoa in heifers fed low-quality forage. Asian-Australasian Journal of Animal Sciences, 2018, 31(11): 1738 (doi: 10.5713/ajas.17.0192).
- Montoya-Flores M.D., Molina-Botero I.C., Arango J., Romano-Muñoz J.L., Solorio-Sánchez F.J., Aguilar-Pérez C.F., Ku-Vera J.C. Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in cross-bred heifers. Animals, 2020, 10(2): 300 (doi: 10.3390/ani10020300).
- Denninger T.M., Schwarm A., Birkinshaw A., Terranova M., Dohme-Meier F., Münger A., Eg-gerschwiler L., Bapst B., Wegmann S., Clauss M., Kreuzer M. Immediate effect of Acacia mearnsii tannins on methane emissions and milk fatty acid profiles of dairy cows. Animal Feed Science and Technology, 2020, 261: 114388 (doi: 10.1016/j.anifeedsci.2019.114388).
- Yang K., Wei C., Zhao G.Y., Xu Z.W., Lin S.X. Effects of dietary supplementing tannic acid in the ration of beef cattle on rumen fermentation, methane emission, microbial flora and nutrient digestibility. Journal of Animal Physiology and Animal Nutrition, 2017, 101(2): 302-310 (doi: 10.1111/jpn.12531).
- Liu H., Vaddella V., Zhou D. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep. Journal of Dairy Science, 2011, 94(12): 6069-6077 (doi: 10.3168/jds.2011-4508).
- Bhatt R.S., Sarkar S., Sharma P., Soni L., Sahoo A. Comparing the efficacy of forage combina-tions with different hydrolysable and condensed tannin levels to improve production and lower methane emission in finisher lambs. Small Ruminant Research, 2023, 218: 106876 (doi: 10.1016/j.smallrumres.2022.106876).
- Torres R.N.S., Ghedini C.P., Paschoaloto J.R., da Silva D.A.V., Coelho L.M., Almeida Jun-ior G.A., Ezequiel J.M.B., Machado Neto O.R., Almeida M.T.C. Effects of tannins supplemen-tation to sheep diets on their performance, carcass parameters and meat fatty acid profile: a meta-analysis study. Small Ruminant Research, 2022, 206: 106585 (doi: 10.1016/j.smallrumres.2021.106585).
- Ibrahim S.L., Hassen A. Effect of non-encapsulated and encapsulated mimosa (Acacia mearnsii) tannins on growth performance, nutrient digestibility, methane and rumen fermentation of South African mutton Merino ram lambs. Animal Feed Science and Technology, 2022, 294: 115502 (doi: 10.1016/j.anifeedsci.2022.115502).
- Febres F.E.F., Terrazas L.A., Vasquez J.Ñ., Muñoz J.E.M., Howard F.S.M., Mariazza E.F. Ef-fects of chestnut bark (Castanea spp.) tannin extracts on selectivity, dry matter intake, weight gain, and enteric methane emission from llamas (Lama glama) under grazing conditions in the high Andean grasslands. Small Ruminant Research, 2021, 205: 106559 (doi: 10.1016/j.smallrum-res.2021.106559).