Влияние способа выведения компонента инициатора из комплекса триэтилбор - гексаметилендиамин на молекулярно-массовые характеристики сополимеров бутилакрилат - винилбутиловый эфир при компенсационной сополимеризации в кипящем мономере

Автор: Семенычева Л.Л., Часова Ю.О., Валетова Н.Б., Маткивская Ю.О., Лиогонькая Т.И., Подгузкова М.В.

Журнал: Вестник Южно-Уральского государственного университета. Серия: Химия @vestnik-susu-chemistry

Рубрика: Химия элементоорганических соединений

Статья в выпуске: 4 т.10, 2018 года.

Бесплатный доступ

Осуществлена радикальная компенсационная сополимеризация бутилакрилата с винилбутиловым эфиром при кипении последнего в присутствии триэтилбора, Соинициатором ему в данных условиях выступает присутствующий в системе остаточный кислород воздуха. Как выяснилось, в кипящем винилбутиловом эфире кислорода достаточно для окисления триэтилбора и осуществления сополимеризации. При введении в реакционную смесь использовали комплекс триэтилбора с гексаметилендиамином. Триэтилбор из комплекса выделяли непосредственно в реакционной среде добавлением метакриловой кислоты двумя способами: совместно с бутилакрилатом (способ 1) или единовременно перед введением бутилакрилата (способ 2). Активный мономер в обоих случаях дозировали в течение 20 мин и перемешивали реакционную смесь еще необходимое время. Непрореагировавшие мономеры удаляли при пониженном давлении (до 0,5 мм. рт. ст.). В условиях вакуумирования полимер сушили до постоянного веса при Т = 20-25 °С. Показано, что в том и другом случае формирование макромолекул происходит по двум центрам роста цепи - олигомерному и низкомолекулярному, причем с ростом конверсии кривая молекулярно-массового распределения первого смещается в область больших значений молекулярных масс. Отмечены признаки формирования олигомерной моды с участием бороксильного радикала, образующегося при окислении триэтилбора, по механизму обратимого ингибирования. Изучена зависимость конверсии мономеров от времени синтеза сополимеров бутилакрилата и винилбутилового эфира, синтезированных компенсационным способом в присутствии триэтилбора. В обоих случаях конверсия нарастает до 40-60 мин значительно быстрее, чем в последующем. Следует обратить внимание на то, что выход по активному мономеру в начале процесса при дозировании метакриловой кислоты совместно с бутилакрилатом (способ 1) нарастает медленнее, чем в случае дозирования метакриловой кислоты до введения бутилакрилата (способ 2). Это можно объяснить тем, что при введении кислоты до бутилакрилата окисление триэтилбора происходит в самом начале процесса, а при совместном введении указанных компонентов в течение 20 мин. В результате в случае способа 2 происходит образование заметно большего количества «неживого» полимера. Анализ состава сополимеров методом ИК-спектроскопии показал, что сополимеры бутилакрилата с винилбутиловым эфиром имеют близкий к эквимольному состав в обоих случаях. Молекулярно-массовые параметры сополимеров исследовали методом гель-проникающей хроматографии. Значения среднечисленной молекулярной массы Мn равномерно увеличиваются с ростом конверсии (Мn имеет смысл рассматривать для унимодального молекулярно-массового распределения начиная с 50 мин для первого способа и 60 мин для второго способа после начала синтеза). Такая зависимость является характерным признаком псевдоживых процессов.

Еще

Бутилакрилат, винилбутиловый эфир, компенсационная сополимеризация, триэтилбор, гексаметилендиамин, введение компонентов инициатора, состав, молекулярно-массовые параметры

Короткий адрес: https://sciup.org/147233111

IDR: 147233111   |   DOI: 10.14529/chem180407

Текст научной статьи Влияние способа выведения компонента инициатора из комплекса триэтилбор - гексаметилендиамин на молекулярно-массовые характеристики сополимеров бутилакрилат - винилбутиловый эфир при компенсационной сополимеризации в кипящем мономере

Для сополимеризации бутилакрилата (БА) с винилбутиловым эфиром (ВБЭ) в присутствии триэтилборана (ТЭБ) в сочетании с кислородом воздуха установлено, что формирование макромолекул происходит по двум центрам роста цепи – олигомерному и низкомолекулярному, при- чем с ростом конверсии кривая молекулярно-массового распределения первого смещается в область больших значений молекулярных масс. Благодаря использованию компенсационного способа синтезированный сополимер бутилакрилата с винилбутиловым эфиром имеет чередующееся строение [1].

Целью данной работы является анализ состава и молекулярно-массовых характеристик сополимеров БА с ВБЭ, образующихся при синтезе компенсационным способом в кипящем ВБЭ в присутствии ТЭБ как компонента инициатора при постепенном, совместно с БА, и одновременном, до БА, введении метакриловой кислоты (МАК) для выделения ТЭБ из комплекса с гексаметилендиамином (ГМДА). Главной задачей при этом явилось изучение состава и молекулярномассовых характеристик сополимеров.

Экспериментальная часть

В работе использовали коммерческие химические реактивы. Мономеры перед использованием освобождали от ингибитора по известной методике [2]. Синтез сополимеров осуществляли компенсационным методом [1]. В колбу помещали ВБЭ и нагревали смесь при перемешивании до его кипения. ТЭБ вводили в реакционную смесь двумя способами:

  • 1    способ: комплекс 2ТЭБ*ГМДА растворяли в ВБЭ, из которого при кипении ВБЭ выделяли ТЭБ добавлением эквимольного количества МАК совместно с БА.

  • 2    способ: комплекс 2ТЭБ*ГМДА растворяли в ВБЭ, из которого при кипении ВБЭ выделяли ТЭБ добавлением эквимольного количества МАК до введения БА.

Активный мономер дозировали в течение 20 мин и перемешивали еще необходимое время. Колбу охлаждали на ледяной бане. Непрореагировавшие мономеры удаляли при пониженном давлении (до 0,5 мм. рт. ст.). В условиях вакуумирования полимер сушили до постоянного веса при Т = 20–25 °С.

Регистрацию ИК-спектров синтезированных сополимеров проводили на ИК-Фурье спектрофотометре Shimadzu FTIR-8400S в кюветах КВr с длиной оптического пути 0.26 мм в растворе хлороформа. Диапазон волновых чисел составляет 5500–550 см–1, погрешность в определении не превышала ±0,05 см–1. Состав сополимера определяли с применением градуировочного графика по площади характеристического пика. В качестве аналитической полосы была выбрана полоса при 1727 см–1 для карбонильной группы (доля акрилата); долю ВБЭ определяли как остаточную по отношению к доле БА в сополимере.

Молекулярную массу (ММ) и молекулярно-массовое распределение (ММР) сополимеров определяли на установке с набором из 5 стирогелевых колонок с диаметром пор 105, 3·104, 104, 103 и 250 Å (Shimadzu). В качестве детектора использовали дифференциальный рефрактометр R-403 и УФ-детектор UV-101 (Waters). Элюентом служил тетрагидрофуран. Для калибровки применяли узкодисперсные стандарты полистирола.

Обсуждение результатов

Результаты исследований компенсационной сополимеризации БА с ВБЭ с использованием в качестве инициирующей системы ТЭБ – кислород [1], свидетельствуют о том, что часть макромолекул образуется с участием стабильного бороксильного радикала, образующегося при окислении ТЭБ. Процесс проводили в кипящем ВБЭ в присутствии комплекса ТЭБ с ГМДА. Для выделения ТЭБ из комплекса (схема 1) совместно с БА дозировали рассчитанное количество МАК:

СНз-СН(СН2)СООН

R3B ■ NH?(CH?)6NH2 ---------------^R3B

Схема 1

В данной работе МАК вводили совместно с БА (способ 1) или единовременно перед введением БА (способ 2).

В условиях компенсационной сополимеризации в кипящем ВБЭ в реакционном сосуде присутствуют следы кислорода, которых, как выяснилось, достаточно для окисления ТЭБ и осуществления сополимеризации. Дозирование БА осуществляли в течение 20 мин (условия, аналогич-

Химия элементоорганических соединений

ные сополимеризации БА с ВБЭ с участием динитрила азоизомасляной кислоты (ДАК), как инициатора [3–6]), а затем продолжали процесс в течение разного времени. Данные о составе сополимеров и конверсии мономеров за разное время синтеза приведены в табл. 1.

Таблица 1

Характеристики сополимера БА-ВБЭ, синтезированного при кипении ВБЭ компенсационным способом в присутствии инициирующей системы (ТЭБ + кислород).

Соотношение БА-ВБЭ = 1:4, концентрация ТЭБ = 0,16 мол %

Способ введения МАК

Время синтеза, мин

Выход по активному мономеру, %

Содержание звеньев БА, мол. % по данным ИК

Способ 1*

20

5–10

51–52

40

30–32

60

42–45

120

60–61

240

63–65

Способ 2

20

49–50

53–58

40

40–60

60

45–60

120

60–61

180

68–70

*[1].

Как следует из данных табл. 1 составы сополимеров БА-ВБЭ, полученных в разных услови- ях, отличаются незначительно.

Исследование молекулярно-массовых характеристик сополимеров БА с ВБЭ показало следующее: в обоих случаях в начале процесса сразу после окончания дозирования БА кривая ММР сополимера бимодальна (рис. 1 а, б, кривые 1). Низкомолекулярные пики ММР имеют низкие значения ММ (M N = 900, М W = 1030, M N = 766, М W = 844, соответственно, для первого и второго способа) и коэффициент полидисперсности (М W /M N ) = 1,1. Фактически это олигомер, образование которого можно объяснить тем, что за счет взаимодействия бороксильного радикала, образующегося при окислении ТЭБ [7–10], с инициирующим или растущим радикалом формируется центр роста полимерной цепи по механизму обратимого ингибирования [10–12] (схема 2).

крМ kd                  .

~ P - OBR2 — — ~ Pv ■ *obr2

" kc

bimolecular termination

Схема 2

Самым очевидным доказательством этому является коэффициент полидисперсности, близкий к 1. Через 10 мин в первом способе и 20 мин во втором после окончания дозирования также наблюдается бимодальное распределение ММР сополимера БА-ВБЭ (рис. 1 а, б, кривые 2). При этом имеет место смещение низкомолекулярной кривой ММР относительно первой и увеличение значений ММ (M N = 950, М W = 1090, M N = 972, М W = 1079, соответственно, для первого и второго способа) при сохранении коэффициента полидисперсности 1,1. Это подтверждает дальнейшее формирование макромолекул по схеме обратимого ингибирования (схема 2). Начиная с образца, выделенного через 20 мин в первом случае и 40 мин во втором после начала синтеза, наблюдается слияние кривых ММР двух центров роста цепи. В результате этого на общей кривой ММР наблюдается большое низкомолекулярное плечо, образованное сополимером, формирование которого проходит по схеме обратимого ингибирования (рис. 1 а, б, кривые 3).

Сополимер БА с ВБЭ, образовавшийся в результате роста и обрыва цепи с участием активных радикалов, в это время уже сформирован. Это следует из ранее полученных данных о полимеризации

БА в присутствии триалкилборанов: показано, что после того, как весь растворенный кислород израсходован, полимеризация идет в условиях, при которых новые цепи практически не образуются. [10]. В последующем периоде (рис. 1) образование полимера связано с процессом по механизму обратимого ингибирования по схеме 2. При этом происходит смещение общей кривой ММР в область больших значений ММ (рис. 1 а, б, кривые 3, 4) и увеличиваются значения среднечисленной ММ (М n , табл. 2), что характерно для псевдоживой (со)полимеризации [13–25]. Значения М n n имеет смысл рассматривать для унимодального ММР, начиная с 50 мин для первого способа и 60 мин для второго способа после начала синтеза) равномерно увеличиваются с ростом конверсии. Такая зависимость является характерным признаком псевдоживых процессов [13–25].

Рис. 1. Кривые ММР сополимеров БА с ВБЭ, синтезированных компенсационным способом в присутствии ТЭБ: а) способом 1; б) способом 2

Таблица 2

Изменение конверсии и молекулярно-массовых характеристик сополимера в процессе синтеза при изменении способа введения БА и МАК

Способ введения МАК

Время синтеза, мин

Выход по активному мономеру, %

М n ×10–3

M w /M n

Способ 1*

20

5–10

30

30–32

50

42–45

14

7,5

120

60–61

15

5,6

240

63–65

20

3,6

Способ 2

20

49–50

40

55–60

60

55–60

10–30

12,1

120

60–61

10–30

13,6

180

68–70

30–32

3,9

*[1].

Можно отметить, что в обоих случаях конверсия нарастает до 40–60 мин значительно быстрее, чем в последующем.

Химия элементоорганических соединений

Следует обратить внимание на то, что выход по активному мономеру (см. табл. 2) в начале процесса при дозировании МАК совместно с БА (способ 1) нарастает медленнее, чем в случае дозирования МАК до введения БА (способ 2). Это можно объяснить тем, что при введении МАК до БА окисление ТЭБ происходит в самом начале процесса, а при совместном введении МАК с БА в течение 20 мин. В первом случае (способ 2) происходит образование заметно большего количества алкильных и алкоксильных радикалов (схема [10]) и, соответственно,– «неживого» полимера. Значения конверсии по активному мономеру (рис. 2) начиная с некоторого времени изменяются заметно медленнее, так как процесс идет преимущественно по механизму обратимого ингибирования: очевиден «излом» кривой на конверсии ~ 40–60 % для обоих способов дозирования.

Рис. 2. Зависимость конверсии мономеров от времени синтеза сополимеров БА–ВБЭ, синтезированных компенсационным способом в присутствии ТЭБ: а) способом 1; б) способом 2

Заключение

Таким образом, проведена радикальная компенсационная сополимеризация бутилакрилата с винилбутиловым эфиром при кипении последнего в присутствии триэтилбора, выделенного из комплекса с гексаметилендиамином двумя способами: непосредственно в реакционной среде добавлением метакриловой кислоты совместно с бутилакрилатом или единовременно перед введением бутилакрилата. Анализ состава сополимеров методом ИК-спектроскопии и молекулярномассовых параметров сополимеров методом гель-проникающей хроматографии показал, что формирование макромолекул в случае любого способа введения метакриловой кислоты происходит по двум центрам роста цепи – олигомерному и низкомолекулярному, причем с ростом конверсии кривая молекулярно-массового распределения первого смещается в область больших значений молекулярных и сополимеры бутилакрилата с винилалкиловыми эфирами имеют близкий к эквимольному состав.

Работа выполнена с использованием оборудования ЦКП «Новые материалы и ресурсосберегающие технологии» НИИХ ННГУ.

Список литературы Влияние способа выведения компонента инициатора из комплекса триэтилбор - гексаметилендиамин на молекулярно-массовые характеристики сополимеров бутилакрилат - винилбутиловый эфир при компенсационной сополимеризации в кипящем мономере

  • Особенности «компенсационной» сополимеризации бутилакрилата с винилбутиловым эфиром в присутствии триэтилбора / Л.Л. Семенычева, Ю.О. Маткивская, Н.Б. Валетова и др. // Известия Академии наук. Серия химическая. - 2017. - № 9. - С. 1660-1664.
  • Органические растворители. Физические свойства и методы очистки / А. Вайсбергер, Э. Проскауэр, Дж. Риддик и др. - М.: Издатинлит, 1958. - 520 с.
  • О структуре сополимеров алкил(мет)акрилатов и винилалкиловых эфиров - новых модификаторов вязкости смазочных масел / Л.Л. Семенычева, Е.В. Гераськина, Ю.О. Маткивская и др. // Журнал прикладной химии. - 2015. - Т. 88, № 10. - С. 1505-1510.
  • Особенности синтеза сополимера бутилакрилата с винил-н-бутиловым эфиром для получения эффективной загущающей присадки к маслам / Л.Л. Семенычева, В.В. Винс, Е.И. Богатова и др. // Журнал прикладной химии. - 2009. - Т. 82. - С. 1542-1545.
  • Гераськина, Е.В. Некоторые особенности компенсационной сополимеризации бутилакрилата и винилбутилового эфира в кипящем мономере / Е.В. Гераськина, А.А. Мойкин, Л.Л. Семенычева // Вестник Казанского технологического университета. - 2015. - Т. 18, № 4. - C. 28-31.
  • Влияние условий синтеза сополимеров бутилакрилата и винилбутилового эфира при компенсационном способе на их молекулярно-массовые параметры и загущающие свойства в диоктилсебацинате / Л.Л. Семенычева, Н.Б. Валетова, А.А. Мойкин и др. // Журнал прикладной химии. - 2016. - Т. 89, № 10. - С. 1351-1356.
  • Krusic, P.J. Electron spin resonance studies of homolytic substitution reactions. Organoboron, -aluminum, and -gallium compounds / P.J. Krusic, J.K. Koshi // J. Am. Chem. Soc. - 1969. - V. 91. - P. 3942-3944.
  • Rensch, R. Autoxidation von trialkylboranen. 1H-NMR-spektroskopische untersuchungen zum mechanismus der oxidation von Trimethylboran / R. Rensch, H. Friboli // Chem. Ber. - 1977. - V. 110, № 6. - P. 2189-2199.
  • Study of initiator system of trialkylboron and oxygen by spin trapping technique / T. Sato, K. Hibino, N. Fukumura et al. // Chem. and Ind. - 1973. - № 15. - P. 745-750.
  • Системы органобораны-кислород воздуха как нетрадиционные инициаторы радикальной полимеризации / М.Ю. Заремский, Е.С. Гарина, М.Е. Гурский и др. // Высокомолекулярные соединения. Серия Б. - 2013. - Т. 55, № 5. - С. 601-624.
  • Chung, T.A Novel "stable" radical initiator based on the oxidation adducts of alkyl-9-bbn / T. Chung, W. Janvikul, H. Lu // J. Am. Chem. Soc. - 1996. - V. 118, № 3. - P. 705-706.
  • Chung, T. Boroxyl-mediated living radical polymerization and applications / T. Chung // Polymer news. - 2003. - V. 28, № 8. - P. 238-244.
  • Гришин, Д.Ф. Проблемы регулирования реакционной способности макрорадикалов и управления ростом полимерной цепи / Д.Ф. Гришин, Л.Л. Семенычева // Успехи химии. - 2001. - Т. 70, № 5. - С. 486-509.
  • Fundamentals of controlled living radical polymerization / N.V. Tsarevsky, B.S. Sumerlin. - Cambridge: RSC, 2013. - 364 p.
  • Progress in reactor engineering of controlled radical polymerization: a comprehensive review / X. Li, E. Mastan, W.J. Wang, et al. // Reaction Chemistry & Engineering. - 2016. - Т. 1, № 1. - С. 23-59.
  • Matyjaszewski, K. Handbook of Radical Polymerization / K. Matyjaszewski, T.P. Davis. - West Sussex: Wiley &Sons, 2002. - 936 p.
  • Заремский, М.Ю. Обратимое ингибирование в радикальной полимеризации / М.Ю. Заремский, В.Б. Голубев // Высокомолекулярные соединения. Серия С. - 2001. - Т. 43, № 9. - С. 1689-1728.
  • Matyjaszewski, K. Controlled radical polymerization / K. Matyjaszewski. - Washington: American Chemical Society, 1998. - 484 p.
  • Matyjaszewski, K. Controlled/living radical polymerization: from synthesis to materials / K. Matyjaszewski. - Washington: American Chemical Society, 2006. - 671 p.
  • Королев, Г.В. Радикальная полимеризация в режиме «живых» цепей / Г.В. Королев, А.П. Марченко // Успехи химии. - 2000. - Т. 69, № 5. - С. 447-475.
  • Barner-Kowollik-Weinheim, C. Handbook of RAFT polymerization. / C. Barner-Kowollik-Weinheim: Wiley-VCH, 2008. - 541 p.
  • Matyjaszewski, K. Macromolecular engineering. Precise synthesis, materials, properties, applications / K. Matyjaszewski, Y. Gnanou, L. Leibler. - Weinheim: Wiley-VCH, 2007. - 564 p.
  • Oudian, G. Principles of Polymerization / G. Oudian. - West Sussex: Wiley & Sons, 2004. - 834 p.
  • Якиманский, А.В. Механизмы «живущей» полимеризации виниловых мономеров / А.В. Якиманский // Высокомолекулярные соединения. Серия С. - 2005. - Т. 47, № 5. - С. 1241-1301.
  • Mueller, A.H.E. Controlled and living polymerizations: methods and materials / A.H.E. Mueller, K. Matyjaszewski. - Weinheim: Wiley-VCH, 2009. - 605 p.
Еще
Статья научная