Внутриопухолевая гетерогенность паренхимы и стромы рака мочевого пузыря
Автор: Жестков И.А., Олейникова Н.А., Охоботов Д.А., Камалов Д.М., Дзитиев В.К., Варенцов М.Г., Нестерова О.Ю., Тивтикян А.С., Мальков П.Г., Камалов А.А.
Журнал: Экспериментальная и клиническая урология @ecuro
Рубрика: Онкоурология
Статья в выпуске: 3 т.17, 2024 года.
Бесплатный доступ
Введение. Взаимодействие стромы и паренхимы опухоли с эпителиальными клетками рака мочевого пузыря (РМП) играет важную роль в течении и прогрессировании заболевания. Однако в настоящее время отсутствуют четко определенные маркеры, отражающие окружение опухоли, что затрудняет оценку их влияния на течение РМП.
Рак мочевого пузыря, молекулярные подтипы, опухолевая гетерогенность, опухоль-ассоциированные фибробласты, cafs, фибробласты, микроокружение опухоли, уротелиальная карцинома, немышечно-инвазивный рак мочевого пузыря, нмирмп, мышечно-инвазивный рак мочевого пузыря, мирмп
Короткий адрес: https://sciup.org/142243275
IDR: 142243275 | DOI: 10.29188/2222-8543-2024-17-3-52-61
Список литературы Внутриопухолевая гетерогенность паренхимы и стромы рака мочевого пузыря
- Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol 2017:71(1):96-108. https://doi.org/10.1016/J.EURURO.2016.06.010.
- Willis D, Kamat M. Nonurothelial bladder cancer and rare variant histologies. Hematol Oncol Clin North Am 2015;29(2):237-52. https://doi.org/10.1016/j.hoc.2014.10.011.
- Smith AB, Deal AM, Woods ME, Wallen EM, Pruthi RS, Chen RC, et al. Muscle-invasive bladder cancer: evaluating treatment and survival in the National Cancer Data Base. BJU Int 2014;114(5):719-26. https://doi.org/10.1111/bju.12601.
- Grossman B., Natale R, Tangen C, Speights V, Vogelzang,N., Trump D, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med 2003;349(9):859-66. https://doi.org/10.1056/NEJMoa022148.
- Tokuyama N, Saito A, Muraoka R, Matsubara S, Hashimoto T, Satake N, et al. Prediction of non-muscle invasive bladder cancer recurrence using machine learning of quantitative nuclear features. Mod Pathol 2022;35(4):533-8. https://doi.org/10.1038/s41379-021-00955-y.
- Fernandez-Gomez J, Solsona E, Unda M, Martinez-Piñeiro L, Gonzalez M, Hernandez R, et al. Prognostic factors in patients with non-muscle-invasive bladder cancer treated with bacillus Calmette-Guérin: multivariate analysis of data from four randomized CUETO trials. Eur Urol 2008;53(5):992-1001. https://doi.org/10.1016/j.eururo.2007.10.006.
- Xylinas E, Kent M, Kluth L, Pycha A, Comploj E, Svatek R, et al. Accuracy of the EORTC risk tables and of the CUETO scoring model to predict outcomes in non-muscle-invasive urothelial carcinoma of the bladder. Br J Cancer 2013;109(6):1460-6. https://doi.org/10.1038/bjc.2013.372.
- Zlotta A, Fleshner N, Jewett M. The management of BCG failure in non-muscle-invasive bladder cancer: an update. Can Urol Assoc J 2009;3(6 Suppl 4):S199-205. https://doi.org/10.5489/cuaj.1196.
- Sawazaki H, Ito K, Asano T, Kuroda K, Horiguchi A, Tsuda H, et al. Expressions of P-Glycoprotein, multidrug resistance Protein 1 and Annexin A2 as predictive factors for intravesical recurrence of bladder cancer after the initial transurethral resection and immediate single intravesical instillation of adriamycin. Asian Pac J Cancer Prev 2021;22(5):1459-66. https://doi.org/10.31557/APJCP.2021.22.5.1459.
- Ayari C, LaRue H, Hovington H, Decobert M, Harel F, Bergeron A, et al. Bladder tumor infiltrating mature dendritic cells and macrophages as predictors of response to bacillus Calmette-Guérin immunotherapy. Eur Urol 2009;55(6):1386-95. https://doi.org/10.1016/j.eururo.2009.01.040.
- Rebello R, Oing C, Knudsen K, Loeb S, Johnson D, Reiter R, et al. Prostate cancer. Nat Rev Dis Primers 2021;7(1):9. https://doi.org/10.1038/s41572-020-00243-0.
- Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 406(6797):747-52. https://doi.org/10.1038/35021093.
- Damrauer J, Hoadley K, Chism D, Fan C, Tiganelli C, Wobker S, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA 2014;111(8):3110-5. https://doi.org/10.1073/pnas.1318376111.
- Choi W, Porten S, Kim S, Willis D, Plimack E, Hoffman-Censits J, et. al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 2014;25(2):152-65. https://doi.org/10.1016/j.ccr.2014.01.009.
- Millikan R, Dinney C, Swanson D, Sweeney P, Ro J, Smith T, et al. Integrated therapy for locally advanced bladder cancer: final report of a randomized trial of cystectomy plus adjuvant M-VAC versus cystectomy with both preoperative and postoperative M-VAC. J Clin Oncol 2001;19(20):4005-13. https://doi.org/10.1200/JCO.2001.19.20.4005.
- 1Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014;507(7492):315-22. https://doi.org/10.1038/nature12965.
- Lindgren D, Frigyesi A, Gudjonsson S, Sjödahl G, Hallden C, Chebil G, et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res 2010;70(9):3463-72. https://doi.org/10.1158/0008-5472.CAN-09-4213.
- Sjödahl G, Lauss M, Lövgren K, Chebil G, Gudjonsson S, Veerla S, et al Molecular taxonomy for urothelial carcinoma. Clin Cancer Res 2012;18(12):3377-86. https://doi.org/10.1158/1078-0432.CCR-12-0077-T.
- Sjödahl G, Lövgren K, Lauss M, Patschan O, Gudjonsson S, Chebil G, et al. Toward a molecular pathologic classification of urothelial carcinoma. Am J Pathol 2013;183(3):681-91. https://doi.org/10.1016/j.ajpath.2013.05.013.
- Sjödahl G, Eriksson P, Liedberg F, Höglund M. Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification. J Pathol 2017;242(1):113-25. https://doi.org/10.1002/path.4886.
- Wang H, Mei Y, Luo C, Huang Q, Wang Z, Lu G, et al. Single-Cell Analyses Reveal Mechanisms of Cancer Stem Cell Maintenance and Epithelial-Mesenchymal Transition in Recurrent Bladder Cancer. Clin Cancer Res 2021;27(22):6265-78. https://doi.org/10.1158/1078-0432.CCR-20-4796.
- Kamoun A, de Reyniès A, Allory Y, Sjödahl G, Robertson A, Seiler R, et al. Bladder Cancer Molecular Taxonomy Group. A Consensus Molecular Classification of Muscle-invasive Bladder Cancer. Eur Urol 2020;77(4):420-33. https://doi.org/10.1016/j.eururo.2019.09.006.
- Sanli O, Dobruch J, Knowles M, Burger M, Alemozaffar M, Nielsen M, et al Bladder cancer. Nat Rev Dis Primers 2017;3:17022. https://doi.org/10.1038/nrdp.2017.22.
- Dadhania V, Zhang M, Zhang L, Bondaruk J, Majewski T, Siefher-Radtke A, et al. MetaAnalysis of the Luminal and Basal Subtypes of Bladder Cancer and the Identification of Signature Immunohistochemical Markers for Clinical Use. EBioMedicine 2016;12:105-17. https://doi.org/10.1016/j.ebiom.2016.08.036.
- Hardy C, Ghaedi H, Slotman A, Sjödahl G, Gooding R, Berman D, et al. Immunohistochemical Assays for Bladder Cancer Molecular Subtyping: Optimizing Parsimony and Performance of Lund Taxonomy Classifiers. J Histochem Cytochem 2022;70(5):357-75. https://doi.org/10.1369/00221554221095530.
- Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther 2021;221:107753. https://doi.org/10.1016/j.pharmthera.2020.107753.
- Caramelo B, Zagorac S, Corral S, Marqués M, Real F. Cancer-associated Fibroblasts in Bladder Cancer: Origin, Biology, and Therapeutic Opportunities. Eur Urol Oncol 2023;6(4):366-75. https://doi.org/10.1016/j.euo.2023.02.011.
- Yang Y, Yang Y, Yang J, Zhao X, Wei X. Tumor microenvironment in ovarian cancer: function and therapeutic strategy. Front Cell Dev Biol 2020;8:758. https://doi.org/10.3389/fcell.2020.00758.
- Zhuang J, Lu Q, Shen B, Huang X, Shen L, Zheng X, et al. TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci Rep 2015;5:11924. https://doi.org/10.1038/srep11924.
- Schulte J, Weidig M, Balzer P, Richter P, Franz M, Junker K, et al. Expression of the E-cadherin repressors Snail, Slug and Zeb1 in urothelial carcinoma of the urinary bladder: relation to stromal fibroblast activation and invasive behaviour of carcinoma cells. Histochem Cell Biol 2012;138(6):847-60. https://doi.org/10.1007/s00418-012-0998-0.
- Santi A, Kugeratski F, Zanivan S. Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics 2018;18(5-6):e1700167. https://doi.org/10.1002/pmic.201700167.
- Edwards D, Handsley M, Pennington C. The ADAM metalloproteinases. Mol Aspects Med 2008;29(5):258-89. https://doi.org/10.1016/j.mam.2008.08.001.
- Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 2003;3(6):422-33. https://doi.org/10.1038/nrc1094.
- Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics 2021;11(11):5365-86. https://doi.org/10.7150/thno.58390.
- Gil-Julio H, Perea F, Rodriguez-Nicolas A, Cozar J, González-Ramirez A, Concha A, et al. Tumor escape phenotype in bladder cancer is associated with loss of HLA Class I Expression, T-Cell exclusion and stromal changes. Int J Mol Sci 2021;22(14):7248. https://doi.org/10.3390/ijms22147248.
- Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz A, Frank P, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 2009;8(23):3984-4001. https://doi.org/10.4161/cc.8.23.10238.
- Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida A, Ponz-Sarvise M, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 2017;214(3):579-96. https://doi.org/10.1084/jem.20162024.
- Galbo PM Jr, Zang X, Zheng D. Molecular Features of Cancer-associated Fibroblast Subtypes and their Implication on Cancer Pathogenesis, Prognosis, and Immunotherapy Resistance. Clin Cancer Res 2021;27(9):2636-47. https://doi.org/10.1158/1078-0432.CCR-20-4226.
- Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov 2022;12(1):31-46. https://doi.org/10.1158/2159-8290.CD-21-1059.
- Chen Z, Zhou L, Liu L, Hou Y, Xiong M, Yang Y, et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun 2020;11(1):5077. https://doi.org/10.1038/s41467-020-18916-5.
- Ma Z, Li X, Mao Y, Wei C, Huang Z, Li G, Interferon-dependent SLC14A1+ cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer. Cancer Cell 2022;40(12):1550-1565.e7. https://doi.org/10.1016/j.ccell.2022.11.005.
- Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 2018;33(3):463-479.e10. https://doi.org/10.1016/j.ccell.2018.01.011.
- Calvete J, Larrinaga G, Errarte P, Martín A, Dotor A, et al. The coexpression of fibroblast activation protein (FAP) and basal-type markers (CK 5/6 and CD44) predicts prognosis in high-grade invasive urothelial carcinoma of the bladder. Hum Pathol 2019;91:61-8. https://doi.org/10.1016/j.humpath.2019.07.002.
- Liu B, Zhan Y, Chen X, Hu X, Wu B, Pan S. Weighted gene co-expression network analysis can sort cancer-associated fibroblast-specific markers promoting bladder cancer progression. J Cell Physiol 2021;236(2):1321-31. https://doi.org/10.1002/jcp.29939.
- Mezheyeuski A, Segersten U, Leiss L, Malmström P, Hatina J, Östman A, et al. Fibroblasts in urothelial bladder cancer define stroma phenotypes that are associated with clinical outcome. Sci Rep 2020;10(1):281. https://doi.org/10.1038/s41598-019-55013-0.
- Schulte J, Weidig M, Balzer P, Richter P, Franz M, Junker K, et al. Expression of the E-cadherin repressors Snail, Slug and Zeb1 in urothelial carcinoma of the urinary bladder: relation to stromal fibroblast activation and invasive behaviour of carcinoma cells. Histochem Cell Biol 2012;138(6):847-60. https://doi.org/10.1007/s00418-012-0998-0.
- Council L, Hameed O. Differential expression of immunohistochemical markers in bladder smooth muscle and myofibroblasts, and the potential utility of desmin, smoothelin, and vimentin in staging of bladder carcinoma. Mod Pathol 2009;22(5):639-50. https://doi.org/10.1038/modpathol.2009.9.
- Alexa A, Baderca F, Lighezan R, Izvernariu D. Myofibroblasts reaction in urothelial carcinomas. Rom J Morphol Embryol 2009;50(4):639-43.
- Zhou Q, Wang Z, Zeng H, Zhang H, Liu Z, Huang Q, et al. Identification and validation of poor prognosis immunoevasive subtype of muscle-invasive bladder cancer with tumor-infiltrating podoplanin+ cell abundance. Oncoimmunology 2020;9(1):1747333. https://doi.org/10.1080/2162402X.2020.1747333.
- Okajima E, Tomizawa M, Shimada K, Negishi T, Nishiyama N, Kitamura H. D2-40/podoplanin expression in cancer stroma by immunohistochemical staining is associated with poor prognosis in bladder cancer patients after radical cystectomy. Urol Oncol 2020;38(10):797.e7-797.e13. https://doi.org/10.1016/j.urolonc.2020.05.020.
- Du Y, Jiang X, Wang B, Cao J, Wang Y, Yu J, et al. The cancer-associated fibroblasts related gene CALD1 is a prognostic biomarker and correlated with immune infiltration in bladder cancer. Cancer Cell Int 2021;21(1):283. https://doi.org/10.1186/s12935-021-01896-x.
- Guan Z, Sun Y, Mu L, Jiang Y, Fan J. Tenascin-C promotes bladder cancer progression and its action depends on syndecan-4 and involves NF-κB signaling activation. BMC Cancer 2022;22(1):240. https://doi.org/10.1186/s12885-022-09285-x.
- Miyai K, Kawamura K, Ito K, Matsukuma S, Tsuda H. Prognostic impact of stromal periostin expression in upper urinary tract urothelial carcinoma. BMC Cancer 2022;22(1):787. https://doi.org/10.1186/s12885-022-09893-7.
- Takeuchi T, Tonooka A, Okuno Y, Hattori-Kato M, Mikami K. Oct4B, CD90, and CD73 are upregulated in bladder tissue following electro-resection of the bladder. J Stem Cells Regen Med 2016;12(1):10-5. https://doi.org/10.46582/jsrm.1201003.
- Said N, Frierson H, Sanchez-Carbayo M, Brekken R, Theodorescu D. Loss of SPARC in bladder cancer enhances carcinogenesis and progression. J Clin Invest 2013;123(2):751-66. https://doi.org/10.1172/JCI64782.