Вопрос о наступлении "новой эры в эпидемиологии малых доз радиации"

Автор: Котеров А.Н., Ушенкова Л.Н., Бирюков А.П., Самойлов А.С.

Журнал: Саратовский научно-медицинский журнал @ssmj

Рубрика: Радиационная медицина

Статья в выпуске: 4 т.12, 2016 года.

Бесплатный доступ

Рассмотрены данные прошлых и недавних лет об учащении раков и/или лейкозов после облучения людей в малых дозах (до 100 мГр) радиацией с низкой линейной передачей энергии, лучевая атрибутивность эффектов и возможность их экспериментального подтверждения. Ранее сведения о канцерогенных эффектах облучения в малых дозах не были однозначно трактуемыми в связи с наличием неопределенностей, субъективных уклонов и вмешивающихся факторов. Биологический механизм также отсутствовал. В последние 5-7 лет ситуация кардинально изменилась: получены более весомые данные, касающиеся облучения при компьютерной томографии, в стоматологии, при проживании в условиях повышенного естественного радиационного фона и др. Параллельно получены радиобиологические данные о повышении уровня двунитевых разрывов ДНК после воздействия в дозах от единиц миллигрей, что может рассматриваться как возможный молекулярный механизм названных эффектов. В результате продекларирована «новая эра в эпидемиологии малых доз» (Kitahara СМ, et al., 2015), что может приводить к издержкам в плане ужесточения радиационных рисков и к опасениям медицинского облучения. Проведенный в обзоре анализ последних эпидемиологических и радиобиологических данных свидетельствует, однако, что отсутствуют как однозначные доказательства радиационной атрибутивности канцерогенных эффектов, выявленных «новой эпидемиологией малых доз», так и доказанный молекулярный механизм, который мог бы обеспечить биологическое правдоподобие таким эффектам.

Еще

Двунитевые разрывы днк, диагностическое облучение, канцерогенез, малые дозы радиации

Короткий адрес: https://sciup.org/14918383

IDR: 14918383

Список литературы Вопрос о наступлении "новой эры в эпидемиологии малых доз радиации"

  • UNSCEAR 1964: Report to the General Assembly, with Scientific Annex. Annex B: Radiation carcinogenesis in man. New York, 1964; p. 81-110
  • UNSCEAR 2008: Report to the General Assembly, with Scientific Annex. Annex D: Health effects due to radiation from the Chernobyl accident. New York: United Nations, 2011; p. 47-219
  • UNSCEAR 2010: Report to the General Assembly, with Scientific Annex. Volume I, Annex A: Medical radiation exposures.New York: United Nations, 2010; p. 23-220
  • UNSCEAR 2006: Report to the General Assembly, with Scientific Annexes. Annex A: Epidemiological studies of radiation and cancer. New York: United Nations, 2008; p. 17-322
  • ICRP Publication 103: The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP. Ed. by J. Valentin. Amsterdam; New York: Elsevier, 2007; 329 p.
  • BEIR VII Report 2006. Phase 2: Health Risks from Exposure to Low Levels of Ionizing Radiation/Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation; National Research Council, http://www.nap.edu/catalog/11340.html (6 December 2016)
  • IARC International Agency for Research on Cancer: IARC monographs on the evaluation of carcinogenic risks to humans: Preamble. Lyon, France, 2006; 27 p.
  • UNSCEAR 2001: Report to the General Assembly, with Scientific Annexes. Annex: Hereditary effects of radiation. New York: United Nations, 2001; p. 5-160
  • Котеров A.H. От очень малых до очень больших доз радиации: новые данные по установлению диапазонов и их экспериментально-эпидемиологические обоснования. Медицинская радиология и радиационная безопасность 2013; 58 (2): 5-21)
  • UNSCEAR 2012: Report to the General Assembly, with Scientific Annex. Annex B: Uncertainties in risk estimates for radiation-induced cancer. New York, 2014; 219 p.
  • Ярмоненко С.П., Вайнсон А.А. Радиобиология человека и животных. М.: Высшая школа, 2004; 549 с.
  • Dauer LT, Brooks AL, Hoel DG, et al. Review and evaluation of updated researches on the health effects associated with low-dose ionizing radiation. Radiat Prot Dosim 2010; 140 (2): 103-136
  • Webster EW. Garland lecture. On the question of cancer induction by small X-ray doses. Am J Roentgenol 1981; 137 (4): 647-666
  • UNSCEAR 2012: Report to the General Assembly, with Scientific Annexes. Annex A: Attributing health effects to ionizing radiation exposure and inferring risks. New York: United Nations, 2015; 86 p.
  • Giles D, Hewitt D, Stewart A, Webb J. Malignant disease in childhood and diagnostic irradiation in utero. Lancet 1956; 271 (6940): 447
  • Stewart AM, Webb KW, Hewitt D. A survey of childhood malignancies. BrMed J 1958; 30 (5086): 1495-1508
  • Doll R, Wakeford R. Risk of childhood cancer from fetal irradiation. Br J Radiol 1997; 70: 130-139
  • Ron E, Lubin JH, Shore RE, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 1995; 141 (3): 259-277
  • De Vathaire F, Hardiman C, Shamsaldin A, et al. Thyroid carcinomas after irradiation for a first cancer during childhood. Arch Intern Med 1999; 159 (22): 2713-2719
  • Hallquist A, Hardell L, Degerman A, et al. Medical diagnostic and therapeutic ionizing radiation and the risk for thyroid cancer: a case-control study. Eur J Cancer Prev 1994; 3 (3): 259-267
  • Hallquist A, Nasman A. Medical diagnostic X-ray radiation -an evaluation from medical records and dentist cards in a case-control study of thyroid cancer in the northern medical region of Sweden. Eur J Cancer Prev 2001; 10 (2): 147-152
  • Hallquist A, Jansson P. Self-reported diagnostic X-ray investigation and data from medical records in case-control studies on thyroid cancer: evidence of recall bias? Eur J Cancer Prev 2005; 14 (3): 271-276
  • Wngren G, Hallquist A, Hardell L. Diagnostic X-ray exposure and female papillary thyroid cancer: a pooled analysis of two Swedish studies. Eur J Cancer Prev 1997; 6 (6): 550-556
  • Preston-Martin S, Paganini-Hill A, Henderson BE, et al. Case-control study of intracranial meningiomas in women in Los Angeles County, California. J Natl Cancer Inst 1980; 65 (1): 67-73
  • Preston-Martin S, Henderson BE, Bernstein L. Medical and dental x rays as risk factors for recently diagnosed tumors of the head. Natl Cancer Inst Monogr 1985; 69: 175-179
  • Preston-Martin S, White SO Brain and salivary gland tumors related to prior dental radiography: implications for current practice. J Am Dent Assoc 1990; 120 (2): 151-158
  • Ryan P, Lee MW, North B, McMichaelAJ. Risk factors for tumors of the brain and meninges: results from the Adelaide Adult Brain Tumor Study. Int J Cancer 1992; 51 (1): 20-27
  • Doody MM, Lonstein JE, Stovall M, et al. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976) 2000; 25 (16): 2052-2063
  • Jacob P, Kenigsberg Y, Zvonova I, et al. Childhood exposure due to the Chernobyl accident and thyroid cancer risk in contaminated areas of Belarus and Russia. Br J Cancer 1999; 80(9): 1461-1469
  • Jacob P, Bogdanova T, Buglova E, et al. Thyroid cancer among Ukrainians and Belarusians who were children or adolescents at the time of the Chernobyl accident. J Radiol Prot 2006; 26(1): 51-67
  • Pierce DA, Preston DL. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Re. 2000; 154 (2): 178-186
  • Preston DL, Pierce DA, Shimizu Y, et al. Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates. Radiat Res 2004; 162 (4): 377-389
  • Preston DL, Ron E, Tokuoka S, et al. Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiat Res 2007; 168(1): 1-64
  • CardisE, Vrijheid M, BlettnerM, etal. Risk of cancer after low doses of ionizing radiation: retrospective cohort study in 15 countries. Brit Med J 2005; 331 (7508): 77
  • Cardis E, Vrijheid M, Blettner M, et al. The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 2007; 167 (4): 396-416
  • Vrijheid M, Cardis E, Ashmore P, et al. Ionizing radiation and risk of chronic lymphocytic leukemia in the 15-country study of nuclear industry workers. Radiat Res 2008; 170 (5): 661 -665
  • Wng S, Shy C, Wood J, et al. Mortality among workers at Oak Ridge National Laboratory. Evidence of radiation effects in follow-up through 1984. J Amer Med Assoc 1991; 265 (11): 1397-1402
  • Carroll RJ. Thyroid cancer after scalp irradiation: a reanalysis accounting for uncertainty in dosimetry. Radiat Res 2000; 154 (6): 721-722
  • ICRP Publication 99: Low-dose Extrapolation of Radiation-related Cancer Risk. Annals of the ICRP. Ed. by J. Valentin. Amsterdam; New-York: Elsevier, 2006. 147 p.
  • UNSCEAR 2013: Report to the General Assembly, with Scientific Annex. Vol. II, Annex B: Effects of radiation exposure of children. New York, 2013; p. 1-268
  • Bradford Hill A. The environment and disease: association or causation? Proc R Soc Med 1965; 58: 295-300
  • Rothman KJ. Causes. Am J Epidemiol 1976; 104 (6): 587-592
  • Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health 2005; 95 (Suppl 1):S144-S150
  • Parascandola M, Weed D. Causation in epidemiology. J Epidemiol Community Health 2001; 55 (12): 905-912
  • Susser M. What is a cause and how do we know one? A grammar for pragmatic epidemiology. Am J Epidemiol 1991; 133 (7): 635-648
  • Котеров A.H. История мифа о нестабильности генома при малых дозах радиации. Научная точка, вероятно, поставлена. Медицинская радиология и радиационная безопасность 2014; 59 (1): 5-19)
  • Котеров A.H. Новые факты об отсутствии индукции нестабильности генома при малых дозах радиации с низкой ЛПЭ и соответствующие выводы о пороге эффекта в сообщении НКДАР-2012. Радиационная биология. Радиоэкология 2014; 54 (3): 309-312
  • Kitahara CM, Linet MS, Rajaraman Р, et al. A New Era of Low-Dose Radiation Epidemiology. Curr Environ Health Rep 2015; 2(3): 236-249
  • Котеров A.H., Ушенкова Л.H., Бирюков А.П. Генные маркеры раков щитовидной железы радиационной этиологии: актуальность поиска и современное состояние проблемы. Радиационная биология. Радиоэкология 2015; 55 (2): 117-135)
  • Котеров A.H., Ушенкова Л.Н., Бирюков А.П. Специфический комплекс нерадиационных факторов риска социально значимых патологий у ликвидаторов аварии на Чернобыльской АЭС. Саратовский научно-медицинский журнал 2014; 10 (4): 782-796
  • Planel Н, Soleillhavoup JP, Tixador R, et al. Influence on cell proliferation of background radiation or exposure to very low chronic gamma radiation. Health Phys 1987; 52 (5): 571-578
  • Кузин A.M. Идеи радиационного гормезиса в атомном веке. М.: Наука, 1995; 158 с.
  • Nair RR, Rajan В, Akiba S, et al. Background radiation and cancer incidence in Kerala, India-Karanagappally cohort study. Health Phys 2009; 96 (1): 55-66
  • Tao Z, Akiba S, Zha Y, et al. Cancer and non-cancer mortality among inhabitants in the high background radiation area of Yangjiang, China (1979-1998). Health Phys 2012; 102 (2): 173-181
  • Kendall GM, Little MP, Wakeford R, et al. A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980-2006. Leukemia 2013; 27 (1): 3-9
  • Koterov AN. Genomic instability at exposure of low dose radiation with low LET. Mythical mechanism of unproved carcinogenic effects. Int J Low Radiation 2005; 1 (4): 376-451
  • Memon A, Godward S, Wlliams D, et al. Dental x-rays and the risk of thyroid cancer: a case-control study. Acta Oncol 2010; 49 (4): 447-453
  • Claus EB., Calvocoressi L, Bondy M, et al. Dental x-rays and risk of meningioma. Cancer 2012; 18 (18): 4530-4537
  • Lin MC, Lee CF, Lin CL, et al. Dental diagnostic X-ray exposure and risk of benign and malignant brain tumors. Ann Oncol 2013; 24 (6): 1675-1679
  • Seifert H, Blass G, Leetz HK, Voges M. The radiation exposure of the patient from stable-xenon computed tomography. Br J Radiol 1995; 68 (807): 301-305
  • Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012; 380 (9840): 499-505
  • Mathews JD Forsythe AV, Brady Z, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Brit Med J 2013; 346: f2360
  • Huang WY, MuoCH, LinCY, etal. Pediatric head CT scan and subsequent risk of malignancy and benign brain tumour: a nation-wide population-based cohort study. Br J Cancer 2014; 110 (9): 2354-2360
  • Meulepas JM, Ronckers CM, Smets AM, et al. Leukemia and brain tumors among children after radiation exposure from CT scans: design and methodological opportunities of the Dutch Pediatric CT Study. Eur J Epidemiol 2014; 29 (4): 293-301
  • White IK, Shaikh KA, Moore RJ, et al. Risk of radiation-induced malignancies from CT scanning in children who underwent shunt treatment before 6 years of age: a retrospective cohort study with a minimum 10-year follow-up. J Neurosurg Pediatr2014; 13 (5): 514-519
  • Krille L, Dreger S, Schindel R, et al. Risk of cancer incidence before the age of 15 years after exposure to ionising radiation from computed tomography: results from a German cohort study. Radiat Environ Biophys 2015; 54 (1): 1 -12
  • Journy N, Rehel JL, Ducou Le Pointe H, et al. Are the studies on cancer risk from CT scans biased by indication? Elements of answer from a large-scale cohort study in France. Br J Cancer 2015; 112 (1): 185-193
  • Berrington de Gonzalez A, Salotti JA, McHugh K, et al. Relationship between pediatric CT scans and subsequent risk of leukaemia and brain tumours: assessment of the impact of underlying conditions. Br J Cancer 2016; 114 (4): 388-394
  • Yuan MK, Tsai DC, Chang SC, et al. The risk of cataract associated with repeated head and neck CT studies: a nationwide population-based study. AJR Am J Rentgenol 2013; 201 (3): 626-630
  • Gage SH, MunafT MR, Davey Smith G. Causal Inference in Developmental Origins of Health and Disease (DOHaD) Research. Annu Rev Psychol 2016; 67: 567-585
  • Boice JD, Jr. Radiation epidemiology and recent pediatric computed tomography studies. Ann ICRP 2015; 44 (1, Suppl): 236-248
  • Sutherland BM, Bennett PV, Sutherland JC, Laval J. Clustered DNA damages induced by x-rays in human cells. Radiat Res 2002; 157 (6): 611-616
  • Rogakou EP, Pilch DR, Orr AH, et al. DNA Double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273 (10): 5858-5868
  • Asaithamby A, Chen DJ. Cellular responses to DNA double-strand breaks after low-dose v-irradiation. Nucleic Acids Research 2009; 37 (12): 3912-3923
  • Neumaier T, Swenson J, Pham Ch, et al. Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc Natl Acad Sci USA 2012; 109 (2): 443-448
  • Rothkamm K, Lobrich M. Evidence for lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 2003; 100 (9): 5057-5062
  • Baure J, Izadi A, Suarez V, et al. Histone H2AX phosphorylation in response to changes in chromatin structure induced by altered osmolarity. Mutagenesis 2009; 24 (2): 161-167
  • De Feraudy S, Revet I, Bezrookove V, et al. A minority of foci or pan-nuclear apoptotic staining of yH2AX in the S phase after UV damage contain DNA double-strand breaks. Proc Natl Acad Sci USA 2010; 107 (15): 6870-6875
  • Schanz S, Schuler N, Lorat Y,et al. Accumulation of DNA damage in complex normal tissues after protracted low-dose radiation. DNA Repair (Amst) 2012; 11 (10): 823-832
  • Rube CE, Dong X, Kbhne M, et al. DNA double-strand break rejoining in complex normal tissues. Int J Radiat Oncol Biol Phys 2008; 72 (4): 1180-1187
  • Rothkamm K, Balroop S, Shekhdar J, et al. Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology 2007; 242 (1): 244-251
  • Grudzenski S, Raths A, Conrad S, et al. Inducible response required for repair of low-dose radiation damage in human fibroblasts. Proc Natl Acad Sci USA 2010; 107 (32): 14205-1410
  • Васильев С.А., Степанова Е.Ю., Кутенков О.П. и др. Двунитевые разрывы ДНК в лимфоцитах человека после однократного воздействия импульсно-периодического рентгеновского излучения в малых дозах: нелинейная до-зовая зависимость. Радиационная биология. Радиоэкология 2012; 52(1): 31-38
  • Газиев А.И. Низкая эффективность репарации критических повреждений ДНК, вызываемых малыми дозами радиации. Радиационная биология. Радиоэкология 2011; 51 (5): 512-529
  • Beels L, Werbrouck J, Thierens H. Dose response and repair kinetics of gamma-H2AX foci induced by in vitro irradiation of whole blood and T-lymphocytes with X-and gamma-radiation. Int J Radiat Biol 2010; 86 (9): 760-768
  • Su Y, Meador JA, Geard CR, Balajee AS. Analysis of ionizing radiation-induced DNA damage and repair in three-dimensional human skin model system. Exp Dermatol 2010; 19 (8):e16-e22
  • Martin CJ, Sutton DG, West CM, Wright EG. The radiobiology/radiation protection interface in healthcare. J Radiol Prot 2009; 29 (2A): A1-A20
  • Preston RJ. Integrating basic radiobiological science and epidemiological studies: why and how. Health Phys 2015; 108 (2): 125-130
  • Ronckers CM, Sigurdson AJ, Stovall M, et al. Thyroid cancer in childhood cancer survivors: a detailed evaluation of radiation dose response and its modifiers. Radiat Res 2006; 166 (4): 618-628
  • Osipov AN, Grekhova A, Pustovalova M, et al. Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation. Oncotarget 2015; 6 (29): 26876-26885
  • Osipov AN, Pustovalova M, Grekhova A, et al. Low doses of X-rays induce prolonged and ATM-independent persistence of yH2AX foci in human gingival mesenchymal stem cells. Oncotarget 2015; 6 (29): 27275-27287.
Еще
Статья научная