The choice of enzyme preparation for mannose containing hydrolyzates with prebiotic activity obtaining
Автор: Radif Z. Kh., Anokhina E.P., Korneeva O.S.
Журнал: Вестник Воронежского государственного университета инженерных технологий @vestnik-vsuet
Рубрика: Биотехнология и бионанотехнология
Статья в выпуске: 3 (73), 2017 года.
Бесплатный доступ
Mannose and mannooligosaccharides have a number of functional properties, which confirms the need to study their obtaining. Mannose, being an indispensable carbohydrate component of immunoglobulins, exhibits anti-inflammatory, prebiotic, immunostimulating properties and can be used for the prevention and treatment of various pathological conditions. Mannooligosaccharides have prebiotic and antioxidant activity. Potential source of mannose and mannooligosaccharides is mannan of plant raw materials, enzymatic treatment of which is a promising and environmentally safe way of their obtaining. As a plant raw material for mannans selection spruce wood was chosen. The effect of the dosage of enzymatic preparations of β-mannanase B. subtilis and Tr. harzianum and hydrolysis duration on the efficiency of the hydrolysis of spruce wood mannans were investigated. Rational parameters of the process of mannan hydrolysis for β-mannanases of various origins were established. For β-mannanase B. subtilis optimal parameters are the dosage of the enzyme preparation 10 U / g, duration 3 hours, temperature 35° C, pH 7.0. For β-mannanase Tr. harzianum the following characteristics were used: dosage of enzyme preparation 15 U / g, duration 4 hours, temperature 60° С, pH 4.5. The ability of mannose containing hydrolysates obtained during fermentative hydrolysis of mannans to stimulate the development of bifidobacteria in vitro in comparison with inulin Raftiline and mannose was investigated. The hydrolysates studied had a pronounced ability to stimulate the growth of bifidobacteria throughout the entire cultivation process, comparable to the activity of the recognized growth promoter of inulin bifidobacteria. However, the hydrolysates obtained by B. subtilis β-mannanase showed more pronounced prebiotic activity compared to the hydrolysates obtained in the hydrolysis of mannans with β-mannanase Tr. harzianum. Thus, the high catalytic ability of B. subtilis β-mannanase to split spruce wood mannans and the more pronounced ability of hydrolysates to stimulate the growth of bifidobacteria make it preferable to use this enzyme to produce mannose containing hydrolyzates from spruce wood..
Mannan, spruce wood, β-mannanase, hydrolysis, mannose, prebiotic activity, mannooligosaccharides
Короткий адрес: https://sciup.org/140229852
IDR: 140229852 | DOI: 10.20914/2310-1202-2017-3-159-163