Взаимодействие песчаной подушки с вязкоупругим грунтовым основанием

Автор: Краев А.Н., Мальцева Т.В., Абдуллаев А.А.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (109), 2023 года.

Бесплатный доступ

Объектом исследования является песчаная подушка с контурным армированием, размещенная в вязкоупругом глинистом основании. Целью работы является анализ напряженно-деформированного состояния армированного грунтового массива.

Слабые глинистые грунты, песчаные подушки, армирование, ползучесть, вязкоупругие свойства

Короткий адрес: https://sciup.org/143182709

IDR: 143182709   |   DOI: 10.4123/CUBS.109.16

Список литературы Взаимодействие песчаной подушки с вязкоупругим грунтовым основанием

  • Liu, Y.-Y., Yeung, A.T., Zhang, D.-L., Li, Y. (2017) Experimental study on the effect of particle shape on stress dip in granular piles. Powder Technology, 319, 415-425. https://sci-hub.ru/10.1016/j.powtec.2017.07.021
  • Maltseva, T., Nabokov, A., Chernykh, A. (2015) Reinforced Sandy Piles for Low-Rise Buildings. Procedia Engineering, 117, 239-245. https://www.sciencedirect.com/science/article/pii/S187770581501810X?via%3Dihub
  • Brian, O. Oyegbile, B., Oyegbile, A. (2017) Applications of geosynthetic membranes in soil stabilization and coastal defence structures. International Journal of Sustainable Built Environment, 6 (2), 636-662. https://www.sciencedirect.com/science/article/pii/S2212609016302059?via%3Dihub
  • Sabri, M.M.S., Vatin, N.I., Nurmukhametov, R.R., Ponomarev, A.B., Galushko, M.M. (2022) Vertical Fiberglass Micro piles as Soil-Reinforcing Elements. Materials, 15(7), 2592. https://pubmed.ncbi.nlm.nih.gov/35407923/
  • Sabri, M.M.S., Vatin, N.I., Ponomarev, A.B., Nurmukhametov, R.R., Kostyukov, I.I. (2022) Settlement of Soil Reinforced with Vertical Fiberglass Micro-Piles. Materials, 15(14), 4744. https://pubmed.ncbi.nlm.nih.gov/35888215/
  • Mirsayapov, I.T., Popov, A.O. (2008) Experimental and theoretical studies of the work of reinforced soil masses. News of the Kazan State University of Architecture and Civil Engineering, 2(10), 75-80. https://cyberleninka.ru/article/n/eksperimentalno-teoreticheskie-issledovaniya-raboty-armirovannyh-gruntovyh-massivov
  • Aleksandrov, A.S., Kalinin, A.L., Tsyguleva M.V. (2016) Distribution capacity of sandy soils reinforced with geosynthetics. Engineering and Construction Journal, 6(66), 35-48. https://cyberleninka.ru/article/n/distribution-capacity-of-sandy-soils-reinforced-with-geosynthetics
  • Brahim Lafifi, Ammar Rouaiguia, El Alia Soltani (2023) A Novel Method for Optimizing Parameters influencing the Bearing Capacity of Geosynthetic Reinforced Sand Using RSM, ANN, and Multiobjective Genetic Algorithm. Studia Geotechnica et Mechanica, 45(2), 174-196. https://doi.org/10.2478/sgem-2023-0006
  • Xiaofei Jing, Changshu Pan, Yulong Chen, Xiangfu Li, Wensong Wang, Xu Hu (2021) Improvement Effect of Reticular Glass Fibers on the Mechanical Properties of Tailings Sand with the Lenticle (Layered Sandy Soil). Water, 13, 1379. https://doi.org/10.3390/w13101379
  • Mohamed Elsawy. (2013) Behaviour of soft ground improved by conventional and geogrid-encased stone columns, based on FEM study. Geosynthetics International, 20(4), 276-285. https://www.researchgate.net/publication/270428065_Behaviour_of_soft_ground_improved_by_conventional_and_geogrid-encased_stone_columns_based_on_FEM_study
  • Basuony M. El-Garhy, Basuony M. El-Garhy. (2016) Behavior of strip footing resting on soft ground stiffened by granular piles. Journal of Engineering And Technology Research, 4(1), 1-12. https://www.researchgate.net/publication/299605014_behavior_of_strip_footing_resting_on_soft_ground_stiffened_by_granular_piles
  • Yada Tesfaye Boru, Adamu Beyene Negesa, Gianvito Scaringi, Wojciech Puła (2022) Settlement Analysis of a Sandy Clay Soil Reinforced with Stone Columns. Studia Geotechnica et Mechanica, 44(4), 333-342. https://doi.org/10.2478/sgem-2022-0020
  • Srijan Kumar Gupta, Ashok Kumar Gupta, (2023) Horizontally Layered and Vertically Encased Geosynthetic Reinforced Stone Column: An Experimental Analysis. Applied Sciences, 13, 1-18. https://www.mdpi.com/journal/applsci
  • Ahmed Hussein Majeed, Alaa H. J. Al-Rkaby (2023) Improving weak soils with reinforced stone columns. 3C Tecnología, 12(2), 78-91. https://doi.org/10.17993/3ctecno.2023.v12n2e44
  • Tewodros Tsegaye Woldesenbeti (2023) Strength Improvement of Black Cotton Soil Using Plastic Bottles and Crushed Glass Wastes. Journal of Engineering, 1583443, 1-11. https://doi.org/10.1155/2023/1583443
  • Mohammad Saleh Baradaran, Ramin Qazanfari, Sajed Baradaran (2023) Study of soil reinforcement in the east of Mashhad using glass granule. Mater. Research Express, 055202, 10. https://doi.org/10.1088/2053-1591/acd5af
  • Govindarajan Kannan, Evangelin Ramani Sujatha (2022) Effect of Nano Additive on Mechanical Properties of Natural Fiber Reinforced Soil. Journal of Natural Fibers, 20(1), 2143980. https://doi.org/10.1080/15440478.2022.2143980
  • Usmanov, R., Mrdak, I., Vatin, N., Murgul, V. (2014) Reinforced soil beds on weak soils. Applied Mechanics and Materials, 633-634, 932-935. https://www.scientific.net/AMM.633-634.932
  • Mangushev R.A., Usmanov R.A., Lanko S.V., Konyushkov V.V. (2012) Methods of preparation and installation of artificial foundations. https://www.litres.ru/book/v-v-konushkov/metody-podgotovki-i-ustroystva-iskusstvennyh-osnovaniy-17187731/
  • Tatyannikov D.A., Ponomarev A.B. (2017) Full-scale testing of reinforced foundation pads. Bulletin of the Perm National Research Polytechnic University. Construction and architecture, 8 (3), 97-105. https://www.researchgate.net/publication/320670335_Full-scale_testing_of_reinforced_foundation_pads
  • Shiranov A.M., Nevzorov A.L. (2020) Increasing the stability of the sand cushion due to prestressing of the reinforcing layers of geosynthetics. Construction and Geotechnics, 11, No. 1, 30-40. https://cyberleninka.ru/article/n/povyshenie-ustoychivosti-peschanoy-podushki-za-schet-prednapryazheniya-armiruyuschih-sloev-geosintetika
  • Ai, Z. Y., Chu, Z. H., Cheng, Y. C. (2020) Time effect of vertically loaded piled rafts in layered cross-anisotropic viscoelastic saturated soils. Computers and Geotechnics, 119, 103384. https://sci-hub.ru/10.1016/j.compgeo.2019.103384
  • Demin V. A. (2005) Experimental and theoretical study of a viscoelastic two-phase medium. https://www.dissercat.com/content/eksperimentalnoe-i-teoreticheskoe-issledovanie-napryazhenno-deformirovannogo-sostoyaniya-dvu
  • Sabri, M.M., Shashkin, K.G. (2023) Soil-structure interaction: theoretical research, in-situ observations, and practical applications. Magazine of Civil Engineering. 120(4), 12005. https://engstroy.spbstu.ru/en/article/2023.120.5/
  • Bugrov A.K., Golly A.V., Kagan A.A., Kuraev S.N., Pirogov I.A., Shashkin A.G. (1997) Field studies of the stress-strain state and consolidation of the foundations of protection complex structures St. Petersburg from floods. Foundations, foundations and soil mechanics, 1, 2-9. https://ofmg.ru/index.php/ofmg/article/view/1535
  • Dalmatov B.I., Bronin V.N., Karlov V.D., Mangushev R.A. (2000) Soil mechanics. Fundamentals of geomechanics in construction, 1, ISBN 5-93093-070-8. https://bik.sfu-kras.ru/elib/view?id=BOOK1-624.131/М55-420115
  • Liu, J.C., Lei, G.H., Wang, X.D. (2015) One-dimensional consolidation of visco-elastic marine clay under depth-varying and time-dependent load Marine. Georesour Geotechnol, 33(4), 337–347. https://www.tandfonline.com/doi/abs/10.1080/1064119X.2013.877109
  • Wang, L., Sun, D.A., Li, P., Xie, Y. (2017) Semi-analytical solution for one-dimensional consolidation of fractional derivative viscoelastic saturated soils. Computers and geotechnics, 83, 30–39. https://www.tandfonline.com/doi/abs/10.1080/1064119X.2013.877109
  • Liao, M., Lai, Y., Liu, E., Wan, X. (2016) A fractional order creep constitutive model of warm frozen silt. Acta Geotechnica, 12(2), 377–389. https://link.springer.com/article/10.1007/s11440-016-0466-4
  • Maltseva, T. (2022) Modeling a weak foundation in interaction with reinforced sand piles under a low-rise building. Key Engineering Materials, 906, 39-45. https://www.scientific.net/KEM.906.39
  • Ilyushin, A.A., Pobedrya, B.E. (1970) Fundamentals of the mathematical theory of thermoviscoelasticity. https://search.rsl.ru/ru/record/01007124977
  • Maltsev, L.E., Karpenko, Yu.I. (1999) The theory of viscoelasticity for civil engineers. ISBN 5-88131-005-5 https://rusneb.ru/catalog/000219_000026_RU_ГПНТБ+России_IBIS_0000253448/
Еще
Статья научная