When all separately band preserving bilinear operators are symmetric?

Автор: Kusraev Anatoly G.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 2 т.9, 2007 года.

Бесплатный доступ

A purely algebraic characterization of universally complete vector lattices in which all separately band preserving bilinear operators are symmetric is obtained: this class consists of universally complete vector lattices with \sigma-distributive Boolean algebra of bands.

Vector lattice, band preserving operator, orthosymmetric bilinear operator, \sigma-distributive boolean algebra, boolean valued model

Короткий адрес: https://sciup.org/14318208

IDR: 14318208

Список литературы When all separately band preserving bilinear operators are symmetric?

  • Aliprantis C. D., Burkinshaw O. Positive Operators.-New York: Acad. Press, 1985.
  • Buskes G., Kusraev A. G. Representation and extension of orthoregular bilinear operators//Vladikavkaz Math. J.-2007.-V. 9, № 1.-P. 16-29.
  • Buskes G., van Rooij, A. Almost f-algebras: commutativity and the Cauchy-Schwarz inequality//Positivity.-2000.-V. 4.-P. 227-231.
  • Buskes G., van Rooij A. Squares of Riesz spaces//Rocky Mountain J. Math.-2001.-V. 31, № 1.-P. 45-56.
  • Gutman A. E. Locally one-dimensional K-spaces and \sigma-distributive Boole\-an algebras//Siberian Adv. Math.-1995.-V. 5, № 2.-P. 99-121.
  • Gutman A. G. Disjointness preserving operators//Vector Lattices and Integral Operators (ed. S. S. Kutateladze).-Dordrecht etc.: Kluwer, 1996.-P. 361-454.
  • Kusraev A. G. Dominated Operators.-Dordrecht: Kluwer, 2000.
  • Kusraev A. G. On band preserving operators//Vladikavkaz Math. J.-2004.-V. 6, № 3.-P. 47-58.
  • Kusraev A. G. Automorphisms and derivations in the algebra of complex measurable functions//Vladikavkaz Math. J.-2005.-V. 7, № 3.-P. 45-49.
  • Kusraev A. G. Automorphisms and derivations in universally complete complex f-algebras//Siberian Math. J.-2006.-V. 47, № 1.-P. 97-107.
  • Kusraev A. G. Analysis, algebra, and logics in operator theory//Complex Analysis, Operator Theory, and Mathematical Modeling (Eds. Yu. F. Korobeinik, A. G. Kusraev).-Vladikavkaz: Vladikavkaz Scientific Center, 2006.-P. 171-204.
  • Kusraev A. G. Orthosymmetric Bilinear Operators.-Vladikavkaz: IAMI VSC RAS, 2007. (Preprint).
  • Kusraev A. G., Kutateladze S. S. Boolean valued analysis.-Dordrecht: Kluwer, 1995.
  • Kusraev A. G., Tabuev S. N. On disjointness preserving bilinear operators//Vladikavkaz Math. J.-2004.-V. 6, № 1.-P. 58-70.
  • Sikorski R. Boolean Algebras.-Berlin etc.: Springer-Verlag, 1964.
  • Wickstead A. W. Representation and duality of multiplication operators on Archimedean Riesz spaces//Compositio Math.-1977.-V. 35, №. 3.-P. 225-238.
Еще
Статья научная