Жидкостная биопсия глиом с выявлением внеклеточных опухолевых нуклеиновых кислот

Автор: Рахматуллин Т.И., Джайн М., Самоходская Л.М., Зуев А.А.

Журнал: Клиническая практика @clinpractice

Рубрика: Научные обзоры

Статья в выпуске: 3 т.15, 2024 года.

Бесплатный доступ

Глиомы являются причиной гибели подавляющего числа больных с онкологическими заболеваниями центральной нервной системы. Диагностика таких новообразований требует использования стереотаксической биопсии, которая может быть проведена далеко не у всех пациентов. Кроме того, данное заболевание характеризуется высокой частотой рецидивов, несмотря на успехи в развитии резекционных и химиотерапевтических технологий. Раннее выявление онкологического заболевания центральной нервной системы и дифференциальная диагностика с псевдопрогрессией опухоли, не влияющей на выживаемость пациента, представляет актуальную задачу для современной медицины. Жидкостная биопсия является малоинвазивным методом диагностики, основанным на анализе опухолевых дериватов (таких как внеклеточная опухолевая ДНК и РНК), находящихся в биологических жидкостях организма. Для определения опухолевого компонента используют анализ так называемых hot-spot мутаций и паттернов эпигенетической регуляции, присущих определённому типу опухоли. Технология может быть использована для выявления рецидивов опухоли и дифференциальной диагностики объёмных образований у пациентов, которым противопоказана стереотаксическая биопсия. В обзоре обсуждаются современные достижения жидкостной биопсии на основе анализа внеклеточной опухолевой ДНК и РНК в плазме крови и спинномозговой жидкости пациентов с глиомами.

Еще

Циркулирующая опухолевая днк, микрорнк, жидкостная биопсия, глиомы, центральная нервная система, злокачественные новообразования цнс, скрининг

Короткий адрес: https://sciup.org/143183425

IDR: 143183425   |   DOI: 10.17816/clinpract629883

Список литературы Жидкостная биопсия глиом с выявлением внеклеточных опухолевых нуклеиновых кислот

  • Ostrom QT, Cioffi G, Waite K, et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol. 2021;23(12, Suppl. 2):III1–III105. EDN: LFHEVS doi: 10.1093/neuonc/noab200
  • Claus EB, Walsh KM, Wiencke JK, et al. Survival and low grade glioma: The emergence of genetic information. Neurosurg Focus. 2015;38(1):E6. EDN: WOMMTF doi: 10.3171/2014.10.FOCUS12367
  • Kim YZ, Kim CY, Lim DH. The overview of practical guidelines for gliomas by KSNO, NCCN, and EANO. Brain Tumor Res Treat. 2022;10(2):83-93. EDN: KTLYBB doi: 10.14791/btrt.2022.0001
  • Schomas DA, Issa Laack NN, Rao RD, et al. Intracranial low-grade gliomas in adults: 30-year experience with longterm follow-up at Mayo Clinic. Neuro Oncol. 2009;11(4):437. doi: 10.1215/15228517-2008-102
  • Kumar AA, Koshy AA. Regression of recurrent highgrade glioma with temozolomide, dexamethasone, and levetiracetam: Case report and review of the literature. World Neurosurg. 2017;108:990.e11–990.e16. EDN: YIAOAT doi: 10.1016/j.wneu.2017.08.136
  • Young JS, Al-Adli N, Scotford K, et al. Pseudoprogression versus true progression in glioblastoma: What neurosurgeons need to know. J Neurosurg. 2023;139(3):748–759. doi: 10.3171/2022.12.JNS222173
  • Van West SE, de Bruin HG, van de Langerijt B, et al. Incidence of pseudoprogression in low-grade gliomas treated with radiotherapy. Neuro Oncol. 2017;19(5):719–725. doi: 10.1093/neuonc/now194
  • Dhawan S, Venteicher AS, Butler WE, et al. Clinical outcomes as a function of the number of samples taken during stereotactic needle biopsies: A meta-analysis. J Neurooncol. 2021;154(1): 1–11. EDN: IEQEAH doi: 10.1007/s11060-021-03785-9
  • Climans SA, Ramos RC, Laperriere N, et al. Outcomes of presumed malignant glioma treated without pathological confirmation: A retrospective, single-center analysis. Neurooncol Pract. 2020;7(4):446. EDN: UTYRNS doi: 10.1093/nop/npaa009
  • Stapińska-Syniec A, Rydzewski M, Acewicz A, et al. Atypical clinical presentation of glioblastoma mimicking autoimmune meningitis in an adult. Folia Neuropathol. 2022;60(2):250–256. EDN: NQZOPD doi: 10.5114/fn.2022.117267
  • Lazzari M, Pronello E, Covelli A, et al. Cerebral nocardiosis mimicking disseminated tumor lesions in a patient with recurrent glioblastoma. Neurological Sciences. 2023;44(6):2213–2215. EDN: SGOKXO doi: 10.1007/s10072-023-06678-z
  • Morokoff A, Jones J, Nguyen H, et al. Serum microRNA is a biomarker for post-operative monitoring in glioma. J Neurooncol. 2020;149(3):391–400. EDN: CJKNFN doi: 10.1007/s11060-020-03566-w
  • Piccioni DE, Achrol AS, Kiedrowski LA, et al. Analysis of cellfree circulating tumor DNA in 419 patients with glioblastoma and other primary brain tumors. CNS Oncol. 2019;8(2):CNS34. doi: 10.2217/cns-2018-0015
  • De Vleeschouwer S. Glioblastoma. Codon Publications; 2017. 432 р. doi: 10.15586/codon.glioblastoma.2017
  • Kim TY, Zhong S, Fields CR, et al. Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylationmediated silencing in malignant glioma. Cancer Res. 2006;66(15):7490–7501. doi: 10.1158/0008-5472.CAN-05-4552
  • Guo X, Piao H. Research progress of circRNAs in glioblastoma. Front Cell Dev Biol. 2021;9:791892. EDN: ONOIHC doi: 10.3389/fcell.2021.791892
  • Gareev I, de Ramirez MJ, Nurmukhametov R, et al. The role and clinical relevance of long non-coding RNAs in glioma. Noncoding RNA Res. 2023;8(4):562–570. EDN: UTRVKO doi: 10.1016/j.ncrna.2023.08.005
  • Pös O, Biró O, Szemes T, Nagy B. Circulating cell-free nucleic acids: Characteristics and applications. Eur J Human Genetics. 2018;26(7):937. doi: 10.1038/s41431-018-0132-4
  • Faria G, Silva E, Da Fonseca C, et al. Circulating cellfree DNA as a prognostic and molecular marker for patients with brain tumors under perillyl alcohol-based therapy. Int J Mol Sci. 2018;19(6):1610. EDN: VHZWWW doi: 10.3390/ijms19061610
  • Liberti MV, Locasale JW. The warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211. doi: 10.1016/j.tibs.2015.12.001
  • Pan C, Diplas BH, Chen X, et al. Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA. Acta Neuropathol. 2019;137(2):297–306. EDN: LDWLGJ doi: 10.1007/s00401-018-1936-6
  • Miller AM, Shah RH, Pentsova EI, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019;565(7741):654–658. EDN: NRCYOO doi: 10.1038/s41586-019-0882-3
  • Yu J, Sheng Z, Wu S, et al. Tumor DNA from tumor in situ fluid reveals mutation landscape of minimal residual disease after glioma surgery and risk of early recurrence. Front Oncol. 2021;11:742037. doi: 10.3389/fonc.2021.742037
  • Bagley SJ, Nabavizadeh SA, Mays JJ, et al. Clinical utility of plasma cell-free DNA in adult patients with newly diagnosed glioblastoma: A pilot prospective study. Clin Cancer Res. 2020;26(2):397–407. doi: 10.1158/1078-0432.CCR-19-2533
  • Zhang L, Wang M, Wang W, Mo J. Incidence and prognostic value of multiple gene promoter methylations in gliomas. J Neurooncol. 2014;116(2):349–356. EDN: SRKETB doi: 10.1007/s11060-013-1301-5
  • Fujioka Y, Hata N, Akagi Y, et al. Molecular diagnosis of diffuse glioma using a chip-based digital PCR system to analyze IDH, TERT, and H3 mutations in the cerebrospinal fluid. J Neurooncol. 2021;152(1):47–54. EDN: EMWSRK doi: 10.1007/s11060-020-03682-7
  • Muralidharan K, Yekula A, Small JL, et al. TERT promoter mutation analysis for blood-based diagnosis and monitoring of gliomas. Clin Cancer Res. 2021;27(1):169–178. doi: 10.1158/1078-0432.CCR-20-3083
  • Husain A, Mishra S, Siddiqui MH, Husain N. Detection of IDH1 mutation in cfDNA and tissue of adult diffuse glioma with allelespecific qPCR. Asian Pac J Cancer Prev. 2023;24(3):961–968. EDN: YBNCDQ doi: 10.31557/APJCP.2023.24.3.961
  • Fontanilles M, Marguet F, Beaussire L, et al. Cell-free DNA and circulating TERT promoter mutation for disease monitoring in newly-diagnosed glioblastoma. Acta Neuropathol Commun. 2020;8(1):179. EDN: FZDHVP doi: 10.1186/s40478-020-01057-7
  • Liu G, Bu C, Guo G, et al. Molecular and clonal evolution in vivo reveal a common pathway of distant relapse gliomas. Science. 2023;26(9):107528. EDN: ONTVUA doi: 10.1016/j.isci.2023.107528
  • Juratli TA, Stasik S, Zolal A, et al. TERT promoter mutation detection in cell-free tumor-derived DNA in patients with IDH wild-type glioblastomas: A pilot prospective study. Clin Cancer Res. 2018;24(21):5282–5291. EDN: QVPXJX doi: 10.1158/1078-0432.CCR-17-3717
  • Labussière M, Boisselier B, Mokhtari K, et al. Combined analysis of TERT, EGFR, and IDH status defines distinct prognostic glioblastoma classes. Neurology. 2014;83(13):1200–1206. doi: 10.1212/WNL.0000000000000814
  • Gong M, Shi W, Qi J, et al. Alu hypomethylation and MGMT hypermethylation in serum as biomarkers of glioma. Oncotarget. 2017;8(44):76797–76806. doi: 10.18632/oncotarget.20012
  • Dai L, Liu Z, Zhu Y, Ma L. Genome-wide methylation analysis of circulating tumor DNA: A new biomarker for recurrent glioblastom. Heliyon. 2023;9(3):e14339. EDN: RHDLGH doi: 10.1016/j.heliyon.2023.e14339
  • Sabedot TS, Malta TM, Snyder J, et al. A serum-based DNA methylation assay provides accurate detection of glioma. Neuro Oncol. 2021;23(9):1494–1508. EDN: TOBMEP doi: 10.1093/neuonc/noab023
  • Majchrzak-Celińska A, Paluszczak J, Kleszcz R, et al. Detection of MGMT, RASSF1A, p15INK4B, and p14ARF promoter methylation in circulating tumor-derived DNA of central nervous system cancer patients. J Appl Genet. 2013;54(3):335–344. EDN: IEYYGZ doi: 10.1007/s13353-013-0149-x
  • Liu BL, Cheng JX, Zhang W, et al. Quantitative detection of multiple gene promoter hypermethylation in tumor tissue, serum, and cerebrospinal fluid predicts prognosis of malignant gliomas. Neuro Oncol. 2010;12(6):540–548. doi: 10.1093/neuonc/nop064
  • Wakabayashi T, Natsume A, Hatano H, et al. p16 Promoter methylation in the serum as a basis for the molecular diagnosis of gliomas. Neurosurgery. 2009;64(3):455–461; discussion 461-2. doi: 10.1227/01.NEU.0000340683.19920.E3
  • Lavon I, Refael M, Zelikovitch B, et al. Serum DNA can define tumor-specific genetic and epigenetic markers in gliomas of various grades. Neuro Oncol. 2010;12(2):173–180. EDN: NAGGRH doi: 10.1093/neuonc/nop041
  • Wang Z, Jiang W, Wang Y, et al. MGMT promoter methylation in serum and cerebrospinal fluid as a tumor-specific biomarker of glioma. Biomed Rep. 2015;3(4):543–548. doi: 10.3892/br.2015.462
  • Fiano V, Trevisan M, Trevisan E, et al. MGMT promoter methylation in plasma of glioma patients receiving temozolomide. J Neurooncol. 2014;117(2):347–357. EDN: UUSJCP doi: 10.1007/s11060-014-1395-4
  • Larson MH, Pan W, Kim HJ, et al. A comprehensive characterization of the cell-free transcriptome reveals tissueand subtype-specific biomarkers for cancer detection. Nature Communications. 2021;12(1):2357. EDN: JSOHEV doi: 10.1038/s41467-021-22444-1
  • Akers JC, Hua W, Li H, et al. A cerebrospinal fluid microRNA signature as biomarker for glioblastoma. Oncotarget. 2017;8(40):68769. doi: 10.18632/oncotarget.18332
  • Wang Q, Li P, Li A, et al. Plasma specific miRNAs as predictive biomarkers for diagnosis and prognosis of glioma. J Exp Clin Cancer Res. 2012;31(1):97. EDN: QZSZWG doi: 10.1186/1756-9966-31-97
  • Ita MI, Wang JH, Toulouse A, et al. The utility of plasma circulating cell-free messenger RNA as a biomarker of glioma: A pilot study. Acta Neurochir (Wien). 2022;164(3):723–735. doi: 10.1007/s00701-021-05014-8
  • Yin K, Liu X. CircMMP1 promotes the progression of glioma through miR-433/HMGB3 axis in vitro and in vivo. IUBMB Life. 2020;72(11):2508–2524. doi: 10.1002/iub.2383
  • Stella M, Falzone L, Caponnetto A, et al. Serum extracellular vesicle-derived circHIPK3 and circSMARCA5 Are two novel diagnostic biomarkers for glioblastoma multiforme. Pharmaceuticals (Basel). 2021;14(7):618. EDN: BEHBAW doi: 10.3390/ph14070618
  • Swellam M, Bakr NM, El Magdoub HM, et al. Emerging role of miRNAs as liquid biopsy markers for prediction of glioblastoma multiforme prognosis. J Mol Neurosci. 2021;71(4):836–844. EDN: CTKSSV doi: 10.1007/s12031-020-01706-5
  • Batool SM, Muralidharan K, Hsia T, et al. Highly sensitive EGFRvIII detection in circulating extracellular vesicle RNA of glioma patients. Clin Cancer Res. 2022;28(18):4070–4082. EDN: SSJLGI doi: 10.1158/1078-0432.CCR-22-0444
  • Zhi F, Shao N, Wang R, et al. Identification of 9 serum microRNAs as potential noninvasive biomarkers of human astrocytoma. Neuro Oncol. 2015;17(3):383–391. doi: 10.1093/neuonc/nou169
  • Díaz Méndez AB, Sacconi A, Tremante E, et al. A diagnostic circulating miRNA signature as orchestrator of cell invasion via TKS4/TKS5/EFHD2 modulation in human gliomas. J Exp Clin Cancer Res. 2023;42(1):66. EDN: NUHLLI doi: 10.1186/s13046-023-02639-8
  • Zhao H, Shen J, Hodges TR, et al. Serum microRNA profiling in patients with glioblastoma: A survival analysis. Mol Cancer. 2017;16(1):59. EDN: SCWKPU doi: 10.1186/s12943-017-0628-5
  • Taylor SC, Laperriere G, Germain H. Droplet digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Scientific Reports. 2017;7(1):2409. doi: 10.1038/s41598-017-02217-x
  • Cheng YW, Stefaniuk C, Jakubowski MA. Real-time PCR and targeted next-generation sequencing in the detection of low level EGFR mutations: Instructive case analyses. Respir Med Case Rep. 2019;28:100901. doi: 10.1016/j.rmcr.2019.100901
  • QIAGEN [Electronic resource]. QIAamp circulating nucleic acid handbook [October, 2019]. Режим доступа: https://www.qiagen.com/us/resources/resourcedetail?id=0c4b31ab-f4fb-425f-99bf-10ab9538c061&lang=en. Дата обращения: 20.07.2024.
  • EXIQON Seek Find Verify [Electronic resource]. miRCURYTM RNA isolation Kit-biofluids. Instruction manual v1.7 #300112 and #300113 [November, 2015]. Режим доступа: https://labettor.com/uploads/products/protocols/411.pdf. Дата обращения: 20.07.2024.
  • Kint S, De Spiegelaere W, De Kesel J, et al. Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR. PLoS One. 2018;13(6):e0199091. doi: 10.1371/journal.pone.0199091
  • Martisova A, Holcakova J, Izadi N, et al. DNA methylation in solid tumors: Functions and methods of detection. Int J Mol Sci. 2021;22(8):4247. EDN: AGKKRD doi: 10.3390/ijms22084247
  • Takara Bio Inc [Electronic resource]. Methylation-sensitive restriction enzymes (MSREs). Режим доступа: https://www.takarabio.com/us/products/cell_biology_and_epigenetics/epigenetics/dna_preparation/msre_overview. Дата обращения: 20.07.2024.
  • Vaisvila R, Ponnaluri VK, Sun Z, et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. 2021;31(7):1280–1289. EDN: NJJWWN doi: 10.1101/gr.266551.120
Еще
Статья обзорная