Жидкостная биопсия плазмы с выявлением циркулирующей опухолевой ДНК как способ малоинвазивной диагностики рака щитовидной железы

Автор: Рахматуллин Т.И., Джайн М., Самоходская Л.М., Животов В.А.

Журнал: Клиническая практика @clinpractice

Рубрика: Научные обзоры

Статья в выпуске: 3 т.14, 2023 года.

Бесплатный доступ

Рак щитовидной железы занимает 9-е место по распространённости среди всего населения. Пятилетняя выживаемость при этом заболевании составляет более 98%. Однако у части пациентов наблюдаются случаи быстропрогрессирующего, стойкого к лечению рака, которые не могут быть выявлены на ранней стадии рутинными методами. Одним из методов решения данной проблемы является использование жидкостной биопсии. Эта процедура заключается в анализе опухолевых дериватов (в частности, циркулирующей ДНК) в биологических жидкостях организма. Для выявления опухолевого компонента применяют анализ hotspot-мутаций и паттернов эпигенетической регуляции, характерных для определённого новообразования. Известно, что повышение уровня циркулирующей опухолевой ДНК в плазме крови может на несколько месяцев опережать диагностику по данным МРТ пациентов, а также превосходить конвенциональные биомаркеры, такие как кальцитонин, при медуллярной карциноме щитовидной железы. Кроме того, имеется возможность малоинвазивного установления генотипа опухоли для подбора оптимальной химиотерапии. В данном обзоре обсуждаются современные достижения в области анализа циркулирующей опухолевой ДНК при таких онкологических заболеваниях щитовидной железы, как папиллярная, фолликулярная, медуллярная и анапластическая карциномы.

Еще

Циркулирующая опухолевая днк, жидкостная биопсия, рак щитовидной железы, скрининг, оценка ответа на химиотерапию

Короткий адрес: https://sciup.org/143180553

IDR: 143180553   |   DOI: 10.17816/clinpract321281

Список литературы Жидкостная биопсия плазмы с выявлением циркулирующей опухолевой ДНК как способ малоинвазивной диагностики рака щитовидной железы

  • Cancer Today. Estimated age-standardized incidence rates (World) in 2020, World, both sexes, all ages (excl. NMSC). Accessed: February 6, 2023. Available from: https://gco.iarc.fr/ today/online-analysis-multi-bars?v=2020.
  • Rossi ED, Pantanowitz L, Hornick JL. A worldwide journey of thyroid cancer incidence centred on tumour histology. Lancet Diabetes Endocrinol. 2021;9(4):193–194. doi: 10.1016/S2213-8587(21)00049-8
  • Survival Rates for Thyroid Cancer. Accessed March 15, 2023. Available from: https://www.cancer.org/cancer/thyroid-cancer/detection-diagnosis-staging/survival-rates.html.
  • Kasemsiri P, Chaisakgreenon P, Vatanasapt P, et al. Survival benefit of intervention treatment in advanced anaplastic thyroid cancer. Int J Surg Oncol. 2021;2021. doi: 10.1155/2021/5545127
  • Sahli ZT, Canner JK, Zeiger MA, Mathur A. Association between age and disease specific mortality in medullary thyroid cancer. Am J Surg. 2021;221(2):478. doi: 10.1016/J.AMJSURG.2020.09.025
  • Lim H, Devesa SS, Sosa JA, et al. Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA. 2017;317(13):1338–1348. doi: 10.1001/JAMA.2017.2719
  • Oh CM, Lim J, Jung YS, et al. Decreasing trends in thyroid cancer incidence in South Korea: What happened in South Korea? Cancer Med. 2021;10(12):4087. doi: 10.1002/CAM4.3926
  • Filetti S, Durante C, Hartl D, et al. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(12):1856–1883. doi: 10.1093/ANNONC/MDZ400
  • Giovanella L, Ceriani L, Garo ML. Is thyroglobulin a reliable biomarker of differentiated thyroid cancer in patients treated by lobectomy? A systematic review and meta-analysis. Clin Chem Lab Med. 2022;60(7):1091–1100. doi: 10.1515/CCLM-2022-0154
  • Jingzhu Z, Xiangqian Z, Ming G, et al. Clinical challenges with calcitonin-negative medullary thyroid carcinoma: Three case reports and a review of the literature. Ann R Coll Surg Engl. 2022;104(3):221–230. doi: 10.1308/rcsann.2020.7118
  • Algeciras-Schimnich A. Thyroglobulin measurement in the management of patients with differentiated thyroid cancer. Crit Rev Clin Lab Sci. 2018;55(3):205–218. doi: 10.1080/10408363.2018.1450830
  • Santos AC, Horta M. Fast-growing cervical mass: Anaplastic thyroid carcinoma. BMJ Case Rep. 2018;2018:bcr2017223578. doi: 10.1136/BCR-2017-223578
  • Trimboli P, Giannelli J, Marques B, et al. Head-to-head comparison of FNA cytology vs. calcitonin measurement in FNA washout fluids (FNA-CT) to diagnose medullary thyroid carcinoma. A systematic review and meta-analysis. Endocrine. 2022;75(1):33–39. doi: 10.1007/s12020-021-02892-x
  • Pálsdóttir K, Fridsten S, Blomqvist L, et al. Interobserver agreement of transvaginal ultrasound and magnetic resonance imaging in local staging of cervical cancer. Ultrasound Obstet Gynecol. 2021;58(5):773–779. doi: 10.1002/UOG.23662
  • Zhou W, Yue Y, Zhang X. Radiotherapy plus chemotherapy leads to prolonged survival in patients with anaplastic thyroid cancer compared with radiotherapy alone regardless of surgical resection and distant metastasis: A retrospective population study. Front Endocrinol (Lausanne). 2021;(12):1–10. doi: 10.3389/FENDO.2021.748023
  • Alix-Panabières C, Pantel K. Liquid biopsy: From discovery to clinical application. Cancer Discov. 2021;11(4):858–873. doi: 10.1158/2159-8290.CD-20-1311
  • Pös O, Biró O, Szemes T, Nagy B. Circulating cell-free nucleic acids: Characteristics and applications. Eur J Hum Genet. 2018;26(7):937–945. doi: 10.1038/S41431-018-0132-4
  • Jiang P, Chan CW, Chan KC, et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci USA. 2015;112(11):E1317–E1325. doi: 10.1073/PNAS.1500076112
  • Salvianti F, Giuliani C, Petrone L, et al. Integrity and quantity of total cell-free DNA in the diagnosis of thyroid cancer: Correlation with cytological classification. Int J Mol Sci. 2017;18(7):1350. doi: 10.3390/IJMS18071350
  • Thakur S, Tobey A, Daley B, et al. Limited Utility of circulating cell-free DNA Integrity as a diagnostic tool for differentiating between malignant and benign thyroid nodules with indeterminate cytology (Bethesda Category III). Front Oncol. 2019;9:905. doi: 10.3389/FONC.2019.00905
  • Giacona MB, Ruben GC, Iczkowski KA, et al. Cell-free DNA in human blood plasma: Length measurements in patients with pancreatic cancer and healthy controls. Pancreas. 1998;17(1):89–97. doi: 10.1097/00006676-199807000-00012
  • Hu Z, Chen H, Long Y, et al. The main sources of circulating cell-free DNA: Apoptosis, necrosis and active secretion. Crit Rev Oncol Hematol. 2021;(157):103166. doi: 10.1016/J.CRITREVONC.2020.103166
  • Liberti MV, Locasale JW. The warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211. doi: 10.1016/J.TIBS.2015.12.001
  • Lee J, Chang JY, Kang YE, et al. Mitochondrial energy metabolism and thyroid cancers. Endocrinol Metab (Seoul). 2015;30(2):117–123. doi: 10.3803/ENM.2015.30.2.117
  • Starenki D, Sosonkina N, Hong SK, et al. Mortalin (GRP75/ HSPA9) promotes survival and proliferation of thyroid carcinoma cells. Int J Mol Sci. 2019;20(9). doi: 10.3390/IJMS20092069
  • McKenzie S, Kyprianou N. Apoptosis evasion: The role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem. 2006;97(1):18. doi: 10.1002/JCB.20634
  • Diehl F, Li M, Dressman D, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA. 2005;102(45):16368. doi: 10.1073/PNAS.0507904102
  • Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther. 2019;20(8):1057. doi: 10.1080/15384047.2019.1598759
  • Caglar O, Cilgin B, Eroglu M, Cayir A. Evaluation of circulating cell free DNA in plasma as a biomarker of different thyroid diseases. Braz J Otorhinolaryngol. 2020;86(3):321–326. doi: 10.1016/J.BJORL.2018.12.008
  • Khier S, Gahan PB. Hepatic clearance of cell-free DNA: Possible impact on early metastasis diagnosis. Mol Diagn Ther. 2021;25(6):677–682. doi: 10.1007/S40291-021-00554-2
  • Heitzer E, Auer M, Hoffmann EM, et al. Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int J Cancer. 2013;133(2):346–356. doi: 10.1002/IJC.28030
  • Stawski R, Walczak K, Kosielski P, et al. Repeated bouts of exhaustive exercise increase circulating cell free nuclear and mitochondrial DNA without development of tolerance in healthy men. PLoS One. 2017;12(5). doi: 10.1371/JOURNAL.PONE.0178216
  • Khatami F, Tavangar SM. Liquid biopsy in thyroid cancer: New insight. Int J Hematol Oncol Stem Cell Res. 2018;12(3):234–247
  • Agarwal S, Bychkov A, Jung CK. Emerging biomarkers in thyroid practice and research. Cancers (Basel). 2021;14(1):204. doi: 10.3390/CANCERS14010204
  • Wan JC, Massie C, Garcia-Corbacho J, et al. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–238. doi: 10.1038/NRC.2017.7
  • Fussey JM, Bryant JL, Batis N, et al. The clinical utility of cell-free DNA measurement in differentiated thyroid cancer: A systematic review. Front Oncol. 2018;(8):132. doi: 10.3389/FONC.2018.00132
  • Kraus-Fischer G, Alvarado-Bachmann R, de Rienzo-Madero B, et al. [Correlation between the Bethesda system for thyroid nodules and post-thyroidectomy histopathological diagnosis. (In Spanish).] Rev Med Inst Mex Seguro Soc. 2020;58(2):114–121. doi: 10.24875/RMIMSS.M20000008
  • Bayrak BYa, Eruyar AT. Malignancy rates for Bethesda III and IV thyroid nodules: A retrospective study of the correlation between fine-needle aspiration cytology and histopathology. BMC Endocr Disord. 2020;20(1):48. doi: 10.1186/S12902-020-0530-9
  • Bongers PJ, Greenberg CA, Hsiao R, et al. Differences in long-term quality of life between hemithyroidectomy and total thyroidectomy in patients treated for low-risk differentiated thyroid carcinoma. Surgery. 2020;167(1):94-101. doi: 10.1016/J.SURG.2019.04.060
  • Celik M, Bulbul BY, Ayturk S, et al. The relation between BRAFV600E mutation and clinicopathological characteristics of papillary thyroid cancer. Med Glas (Zenica). 2020;17(1):30–34. doi: 10.17392/1086-20
  • Ritterhouse LL, Barletta JA. BRAF V600E mutation-specific antibody: A review. Semin Diagn Pathol. 2015;32(5):400–408. doi: 10.1053/J.SEMDP.2015.02.010
  • Acuña-Ruiz A, Carrasco-López C, Santisteban P. Genomic and epigenomic profile of thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2023;37(1):101656. doi: 10.1016/J.BEEM.2022.101656
  • Yao Y, Xu P, Ying T, et al. Integrative analysis of DNA methylation and gene expression identified follicular thyroid cancerspecific diagnostic biomarkers. Front Endocrinol (Lausanne). 2022;12:736068. doi: 10.3389/FENDO.2021.736068/FULL
  • Gu P, Zeng Y, Ma W, et al. Characterization of the CpG island methylator phenotype subclass in papillary thyroid carcinoma. Front Endocrinol (Lausanne). 2022;13:1008301. doi: 10.3389/FENDO.2022.1008301/FULL
  • Rodríguez-Rodero S, Delgado-Álvarez E, Díaz-Naya L, Martín Nieto A, Menéndez Torre E. Epigenetic modulators of thyroid cancer. Endocrinol Diabetes Nutr. 2017;64(1):44–56. doi: 10.1016/J.ENDINU.2016.09.006
  • Mancikova V, Buj R, Castelblanco E, et al. DNA methylation profiling of well-differentiated thyroid cancer uncovers markers of recurrence free survival. Int J Cancer. 2014;135(3):598–610. doi: 10.1002/IJC.28703
  • Alvarez-Nuñez F, Bussaglia E, Mauricio D, et al. PTEN promoter methylation in sporadic thyroid carcinomas. Thyroid. 2006;16(1):17–23. doi: 10.1089/THY.2006.16.17
  • Zarkesh M, Zadeh-Vakili A, Azizi F, et al. Altered epigenetic mechanisms in thyroid cancer subtypes. Molecular Diagnosis Therapy. 2017;22(1):41–56. doi: 10.1007/S40291-017-0303-Y
  • Asa SL, Ezzat S. The epigenetic landscape of differentiated thyroid cancer. Mol Cell Endocrinol. 2018;469:3–10. doi: 10.1016/J.MCE.2017.07.012
  • Condello V, Macerola E, Ugolini C, et al. Analysis of circulating tumor DNA does not improve the clinical management of patients with locally advanced and metastatic papillary thyroid carcinoma. Head Neck. 2018;40(8):1752–1758. doi: 10.1002/HED.25155
  • Lupo M, Guttler R, Geck Z, et al. Is measurement of circulating tumor dna of diagnostic use in patients with thyroid nodules? Endocr Pract. 2018;24(5):453–459. doi: 10.4158/EP-2017-0213
  • Scholarship W, Bhupendrabhai PK, Nichols AC, Bhupendrabhai K. Detection of circulating thyroid tumor DNA in patients with thyroid nodules. Published online 2015. Accessed: February 27, 2022. Available from: https://ir.lib.uwo.ca/etd/3644/.
  • Kwak JY, Jeong JJ, Kang SW, et al. Study of peripheral BRAF(V600E) mutation as a possible novel marker for papillary thyroid carcinomas. Head Neck. 2013;35(11):1630–1633. doi: 10.1002/HED.23195
  • Chuang TC, Chuang AY, Poeta L, et al. Detectable BRAF mutation in serum DNA samples from patients with papillary thyroid carcinomas. Head Neck. 2010;32(2):229–234. doi: 10.1002/HED.21178
  • Kim BH, Kim IJ, Lee BJ, et al. Detection of plasma BRAF(V600E) mutation is associated with lung metastasis in papillary thyroid carcinomas. Yonsei Med J. 2015;56(3):634–640. doi: 10.3349/YMJ.2015.56.3.634
  • Jensen K, Thakur S, Patel A, et al. Detection of BRAFV600E in liquid biopsy from patients with papillary thyroid cancer is associated with tumor aggressiveness and response to therapy. J Clin Med. 2020;9(8):1–12. doi: 10.3390/JCM9082481
  • Li H, Zhao J, Zhang J, et al. Detection of ctDNA in the plasma of patients with papillary thyroid carcinoma. Exp Ther Med. 2019;18(5):3389–3396. doi: 10.3892/ETM.2019.7997
  • Khatami F, Teimoori-Toolabi L, Heshmat R, et al. Circulating ctDNA methylation quantification of two DNA methyl transferases in papillary thyroid carcinoma. J Cell Biochem. 2019; 120(10):17422–17437. doi: 10.1002/JCB.29007
  • Hu S, Ewertz M, Tufano RP, et al. Detection of serum deoxyribonucleic acid methylation markers: A novel diagnostic tool for thyroid cancer. J Clin Endocrinol Metaboli. 2006;91(1): 98–104. doi: 10.1210/JC.2005-1810
  • Molinaro E, Romei C, Biagini A, et al. Anaplastic thyroid carcinoma: From clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017;13(11):644–660. doi: 10.1038/NRENDO.2017.76
  • Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–1066. doi: 10.1172/JCI85271
  • Yakushina VD, Lerner LV, Lavrov AV. Gene fusions in thyroid cancer. Thyroid. 2018;28(2):158–167. doi: 10.1089/thy.2017.0318
  • Qin Y, Wang JR, Wang Y, et al. Clinical utility of circulating cellfree DNA mutations in anaplastic thyroid carcinoma. Thyroid. 2021;31(8):1235–1243. doi: 10.1089/THY.2020.0296
  • Sandulache VC, Williams MD, Lai SY, et al. Real-Time genomic characterization utilizing circulating cell-free DNA in patients with anaplastic thyroid carcinoma. Thyroid. 2017;27(1):81–87. doi: 10.1089/THY.2016.0076
  • Allin DM, Shaikh R, Carter P, et al. Circulating tumour DNA is a potential biomarker for disease progression and response to targeted therapy in advanced thyroid cancer. Eur J Cancer. 2018;(103):165–175. doi: 10.1016/J.EJCA.2018.08.013
  • Iyer PC, Cote GJ, Hai T, et al. Circulating BRAF V600E cellfree DNA as a biomarker in the management of anaplastic thyroid carcinoma. JCO Precis Oncol. 2018;(2):1–11. doi: 10.1200/PO.18.00173
  • Wells SA, Asa SL, Dralle H, et al. Revised American thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610. doi: 10.1089/THY.2014.0335
  • Cote GJ, Evers C, Hu MI, et al. Prognostic significance of circulating RET M918T mutated tumor DNA in patients with advanced medullary thyroid carcinoma. J Clin Endocrinol Metab. 2017;102(9):3591–3599. doi: 10.1210/JC.2017-01039
  • Machens A, Dralle H. Biomarker-based risk stratification for previously untreated medullary thyroid cancer. J Clin Endocrinol Metab. 2010;95(6):2655–2663. doi: 10.1210/JC.2009-2368
  • Fugazzola L, di Stefano M, Censi S, et al. Basal and stimulated calcitonin for the diagnosis of medullary thyroid cancer: Updated thresholds and safety assessment. J Endocrinol Invest. 2021;44(3):587. doi: 10.1007/S40618-020-01356-9
  • Kartal Baykan E, Erdoğan M. Basal and pentagastrinstimulated calcitonin cut-off values in diagnosis of preoperative medullary thyroid cancer. Turk J Med Sci. 2021;51(2):650. doi: 10.3906/SAG-2003-182
  • Solomon BJ, Tan L, Lin JJ, et al. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-Driven malignancies. J Thorac Oncol. 2020;15(4):541–549. doi: 10.1016/J.JTHO.2020.01.006
  • QIAamp Circulating Nucleic Acid Handbook, QIAGEN. Accessed: July 20, 2022. Available from: https://www.qiagen.com/us/resources/resourcedetail?id=0c4b31ab-f4fb-425f-99bf-10ab9538c061&lang=en.
  • Taylor SC, Laperriere G, Germain H. Droplet digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Scientific Reports 2017;7(1):2409. doi: 10.1038/s41598-017-02217-x
  • Liu R, Xing M. TERT Promoter mutations in thyroid cancer. Endocr Relat Cancer. 2016;23(3):R143. doi: 10.1530/ERC-15-0533
  • Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: Systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001;29(13):65–65. doi: 10.1093/NAR/29.13.E65
  • Liu Y, Siejka-Zielińska P, Velikova G, et al. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nat Biotechnol. 2019;37(4):424–429. doi: 10.1038/S41587-019-0041-2
  • Martisova A, Holcakova J, Izadi N, et al. DNA methylation in solid tumors: Functions and methods of detection. Int J Mol Sci. 2021;22(8):4247. doi: 10.3390/IJMS22084247
  • About ThyroSeq. ThyroSeq International. Accessed: February 6, 2023. Available from: https://thyroseqinternational.com/aboutthyroseq.
  • Silaghi CA, Lozovanu V, Georgescu CE, et al. Thyroseq v3, Afirma GSC, and microRNA panels versus previous molecular tests in the preoperative diagnosis of indeterminate thyroid nodules: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2021;(12):649522. doi: 10.3389/FENDO.2021.649522/FULL
  • Afirma Thyroid Molecular Diagnostics. Accessed: February 6, 2023. Available from: https://www.afirma.com/.
  • Polyzos SA, Anastasilakis AD. Clinical complications following thyroid fine-needle biopsy: A systematic review. Clin Endocrinol (Oxf). 2009;71(2):157–165. doi: 10.1111/J.1365-2265.2009.03522.X
  • Cao H, Kao RH, Hsieh MC. Comparison of core-needle biopsy and fine-needle aspiration in screening for thyroid malignancy: A systematic review and meta-analysis. Curr Med Res Opin. 2016;32(7):1291–1301. doi: 10.1185/03007995.2016.1170674
  • Zane M, Agostini M, Enzo MV, et al. Circulating cell-free DNA, SLC5A8 and SLC26A4 hypermethylation, BRAFV600E: A non-invasive tool panel for early detection of thyroid cancer. Biomed Pharmacother. 2013;67(8):723–730. doi: 10.1016/J.BIOPHA.2013.06.007
Еще
Статья обзорная