Жирный хвост у овец: методы изучения генетических механизмов формирования фенотипа и идентифицированные гены-кандидаты (обзор)
Автор: Денискова Т.Е., Kunz E., Medugorac I., Доцев А.В., Brem G., Зиновьева Н.А.
Журнал: Сельскохозяйственная биология @agrobiology
Рубрика: Обзоры
Статья в выпуске: 6 т.54, 2019 года.
Бесплатный доступ
Жирнохвостые овцы, на долю которых приходится 25 % мировой популяции овец, широко распространены в странах Африки, Азии (A. Davidson, 1999), на Ближнем Востоке (S.P. Alves c соавт., 2013), а также в России (И.М. Дунин с соавт., 2013). Курдючный овечий жир был важным ингредиентом национальной кухни у многих этнических групп (С. Perry, 1995; A. Hajihosseinlo с соавт., 2015). В настоящее время растет спрос на постную пищу и снижение потребления жира, в связи с чем преимущества повышенного жироотложения в области хвостов у овец теряют значимость для производства продуктов питания (A. Nejati-Javaremi c соавт., 2007; M. Moradi c соавт., 2012). Развитие технологий геномного редактирования (N.A. Zinovieva с соавт., 2018) делает актуальным поиск генов, обусловливающих фенотип жирного хвоста, для их последующего нокаута при сохранении других ценных свойств жирнохвостых пород. В настоящем обзоре обобщены результаты исследований по идентификации генов-кандидатов, ассоциированных с признаком жирного хвоста. Для идентификации генов-кандидатов используются различные методы: поиск локусов под давлением селекции (signatures of selection) на основе расчета различий в частотах аллелей (значения Fst) или гаплотипов между популяциями (метод hapFLK) (M.H. Moradi c соавт., 2012; M.I. Fariello c соавт., 2013; C.M. Rochus c соавт., 2018); полногеномные ассоциативные исследования (genome-wide association study, GWAS), для проведения которых необходимо создать базу фенотипической вариабельности изучаемого признака (S.S. Xu c соавт., 2017); анализ вариации числа копий (copy number variation, CNV), способных изменять экспрессию генов из-за делеции или дублирования генов в регионах вариации (C. Zhu c соавт., 2016; Q. Ma c соавт., 2017; V. Bhanuprakash c соавт., 2018); изучение экспрессии генов с помощью технологии RNA-seq (RNA sequencing), основанной на транскриптомном анализе с использованием технологии секвенирования нового поколения (next generation sequencing, NGS) (W.A. Hoeijmakers, 2013). Суммируя результаты исследований, можно выделить наиболее значимые гены-кандидаты, ассоциированные с депонированием жира в хвостовой области у овец: BMP2 и VRTN (Z. Yuan c соавт., 2017; S. Mastrangelo c соавт., 2018; Z. Pan c соавт., 2019); PDGFD (C. Wei c соавт., 2015; S. Mastrangelo c соавт., 2018); гены семейства Homeobox (D. Kang c соавт., 2017; A.A. Yurchenko c соавт., 2019; A. Ahbara c соавт., 2019); SP9 (Z. Yuan c соавт., 2017; D. Kang c соавт., 2017); WDR92 и ETAA1 (Z. Yuan c соавт., 2017; L. Ma c соавт., 2018); CREB1 (S.S. Xu c соавт., 2017; L. Ma c соавт., 2018); FABP4 (M.R. Bakhtiarizadeh c соавт. 2013; B. Li c соавт., 2018); PPARA, RXRA, KLF11, ADD1, FASN, PPP1CA и PDGFA (C. Zhu c соавт., 2016; Q. Ma c соавт., 2017). Для поиска генов-кандидатов, вовлеченных в формирование жирного хвоста у российских пород, и последующего проведения полногеномных ассоциативных исследований заложена ресурсная популяция овец, полученная от скрещивания длинножирнохвостой карачаевской и короткотощехвостой романовской пород (ФНЦ животноводства - ВИЖ им. академика Л.К. Эрнста).
Домашние овцы, жирный хвост, курдюк, генетический маркер, днк-чипы
Короткий адрес: https://sciup.org/142226268
IDR: 142226268 | DOI: 10.15389/agrobiology.2019.6.1065rus
Список литературы Жирный хвост у овец: методы изучения генетических механизмов формирования фенотипа и идентифицированные гены-кандидаты (обзор)
- Белоус А.А., Сермягин А.А., Костюнина О.В., Брем Г., Зиновьева Н.А. Изучение генетической архитектуры конверсии корма у хряков (Sus scrofa) породы дюрок на основе полногеномного анализа SNP. Сельскохозяйственная биология, 2019, 54(4): 705-712 ( ). DOI: 10.15389/agrobiology.2019.4.705rus
- Nejati-Javaremi A., Izadi F., Rahmati G., Moradi M. Selection in fat-tailed sheep based on two traits of fat-tail and body weight versus single-trait total body weight. Int. J. Agri. Biol., 2007, 9(4): 645-648.
- Davidson A. The Oxford companion to food. Oxford University Press, Oxford, UK, 1999.
- Wei C., Wang H., Liu G., Wu M., Cao J., Liu Z., Liu R., Zhao F., Zhang L., Lu J., Liu C., Du L. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genomics, 2015, 16: 194 ( ). DOI: 10.1186/s12864-015-1384-9
- Alves S.P., Bessa R.J.B., Quaresma M.A.G., Kilminster T., Scanlon T., Oldham C., Milton J., Greeff J., Almeida A.M. Does the fat tailed Damara ovine breed have a distinct lipid metabolism leading to a high concentration of branched chain fatty acids in tissues? PLoS ONE, 2013, 8(10): e77313 ( ). DOI: 10.1371/journal.pone.0077313
- Дунин И.М., Данкверт А.Г. Справочник пород и типов сельскохозяйственных животных, разводимых в Российской Федерации. М., 2013.
- Perry C. The fate of the tail. In: Disappearing foods: studies in food and dishes at risk: Proceedings of the Oxford symposium on food and cookery /H. Walker (ed.). Pro-spect Books, UK, 1995.
- Hajihosseinlo A., Jafari S., Ajdary M. The relationship of GH and LEP gene poly-morphisms with fat-tail measurements (fat-tail dimensions) in fat-tailed Makooei breed of Iranian sheep. Adv. Biomed. Res., 2015, 4: 172 ( ).
- DOI: 10.4103/2277-9175.163995
- Moradi M.H., Nejati-Javaremi A., Moradi-Shahrbabak M., Dodds K.G., McEwan J.C. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genetics, 2012, 13: 10 ( ).
- DOI: 10.1186/1471-2156-13-10
- Zeder M.A. Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proceedings of the National Academy of Sciences, 2008, 105(33): 11597-11604 ( ).
- DOI: 10.1073/pnas.0801317105
- Hiendleder S., Kaupe B., Wassmuth R., Janke A. Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies. Proc. R. Soc. Lond. B., 2002, 269(1494): 893-904 ( ).
- DOI: 10.1098/rspb.2002.1975
- Rezaei H.R., Naderi S., Chintauan-Marquier I.C., Taberlet P., Virk A.T., Naghash H.R., Rioux D., Kaboli M., Luikart G., Pompanon F. Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae). Molecular Phylogenetics and Evolution, 2010, 54(2): 315-326 ( ).
- DOI: 10.1016/j.ympev.2009.10.037
- Demirci S., Koban Baştanlar E., Dağtaş N.D., Pişkin E., Engin A., Özer F., Yüncü E., Doğan S.A., Togan İ. Mitochondrial DNA diversity of modern, ancient and wild sheep (Ovis gmelinii anatolica) from Turkey: new insights on the evolutionary history of sheep. PLoS ONE, 2013, 8(12): e81952 ( ).
- DOI: 10.1371/journal.pone.0081952
- Ryder M.L. Sheep and man. Gerald Duckworth & Co. Ltd., London, 1983.
- Epstein H. The Awassi sheep with special reference to the improved dairy type. FAO Animal production and health paper, 1985, 57: 282.
- Kashan N.E.J., Azar G.H.M., Afzalzadeh A., Salehi A. Growth performance and carcass quality of fattening lambs from fat-tailed and tailed sheep breeds. Small Ruminant Research, 2005, 60(3): 267-271 ( ).
- DOI: 10.1016/j.smallrumres.2005.01.001
- Lv F.H., Peng W.F., Yang J., Zhao Y.X., Li W.R., Liu M.J., Ma Y.H., Zhao Q.J., Yang G.L., Wang F., Li J.Q., Liu Y.G., Shen Z.Q., Zhao S.G., Hehua E., Gorkhali N.A., Farhad Vahidi S.M., Muladno M., Naqvi A.N., Tabell J., Iso-Touru T., Bruford M.W., Kantanen J., Han J.L., Li M.H. Mitogenomic meta-analysis identifies two phases of migration in the history of Eastern Eurasian sheep. Molecular Biology and Evolution, 2015, 32(10): 2515-2533 ( ).
- DOI: 10.1093/molbev/msv139
- Zhao Y.X., Yang J., Lv F.H., Hu X.J., Xie X.L., Zhang M., Li W.R., Liu M.J., Wang Y.T., Li J.Q., Liu Y.G., Ren Y.L., Wang F., Hehua E., Kantanen J., Arjen Lenstra J., Han J.L., Li M.H. Genomic reconstruction of the history of native sheep reveals the peopling patterns of nomads and the expansion of early pastoralism in East Asia. Molecular Biology and Evolution, 2017, 34(9): 2380-2395 ( ).
- DOI: 10.1093/molbev/msx181
- Deniskova T.E., Dotsev A.V., Selionova M.I., Kunz E., Medugorac I., Reyer H., Wimmers K., Barbato M., Traspov A.A., Brem G., Zinovieva N.A. Population structure and genetic diversity of 25 Russian sheep breeds based on whole-genome genotyping. Genet. Sel. Evol., 2018, 50(1): 29 ( ).
- DOI: 10.1186/s12711-018-0399-5
- Proudfoot C., Carlson D.F., Huddart R., Long C.R., Pryor J.H., King T.J., Lillico S.G., Mileham A.J., McLaren D.G., Whitelaw C.B., Fahrenkrug S.C. Genome edited sheep and cattle. Transgenic Res., 2015, 24(1): 147-153 ( ).
- DOI: 10.1007/s11248-014-9832-x
- Zhou S., Yu H., Zhao X., Cai B., Ding Q., Huang Y., Li Y., Li Y., Niu Y., Lei A., Kou Q., Huang X., Petersen B., Ma B., Chen Y., Wang X. Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9. Reproduction, Fertility and Development, 2018, 30(12): 1616-1621 ( ).
- DOI: 10.1071/RD18086
- Zinovieva N.A., Volkova N.A., Bagirov V.A. Genome editing: state of the art and application to animal husbandry. Biotekhnologiya, 2018, 34(3): 9-22 ( ).
- DOI: 10.21519/0234-2758-2018-34-3-9-22
- Rochus C.M., Tortereau F., Plisson-Petit F., Restoux G., Moreno-Romieux C., Tosser-Klopp G., Servin B. Revealing the selection history of adaptive loci using genome-wide scans for selection: an example from domestic sheep. BMC Genomics, 2018, 19(1): 71 ( ).
- DOI: 10.1186/s12864-018-4447-x
- García-Gámez E., Reverter A., Whan V., McWilliam S.M., Arranz J.J., Consortium ISG, Kijas J. Using regulatory and epistatic networks to extend the findings of a genome scan: identifying the gene drivers of pigmentation in merino sheep. PLoS ONE, 2011, 6(6): e21158 ( ).
- DOI: 10.1371/journal.pone.0021158
- Kijas J.W., Lenstra J.A., Hayes B., Boitard S., Porto Neto L.R., San Cristobal M., Servin B., McCulloch R., Whan V., Gietzen K., Paiva S., Barendse W., Ciani E., Raadsma H., McEwan J., Dalrymple B., International Sheep Genomics Consortium Members. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 2012, 10(2): e1001258 ( ).
- DOI: 10.1371/journal.pbio.1001258
- Fariello M.I., Servin B., Tosser-Klopp G., Rupp R., Moreno C., Consortium ISG, San Cristobal M., Boitard S. Selection signatures in worldwide sheep populations. PLoS ONE, 2014, 9(8): e103813 ( ).
- DOI: 10.1371/journal.pone.0103813
- Fleming-Waddell J.N., Olbricht G.R., Taxis T.M., White J.D., Vuocolo T., Craig B.A., Tellam R.L., Neary M.K., Cockett N.E., Bidwell C.A. Effect of DLK1 and RTL1 but not MEG3 or MEG8 on muscle gene expression in Callipyge lambs. PLoS ONE, 2009, 4(10): e7399 ( ).
- DOI: 10.1371/journal.pone.0007399
- Moioli B., Scatà M.C., Steri R., Napolitano F., Catillo G. Signatures of selection identify loci associated with milk yield in sheep. BMC Genet., 2013, 14: 76 ( ).
- DOI: 10.1186/1471-2156-14-76
- Liu Z.H., Ji Z.B., Wang G.Z., Chao T.L., Hou L., Wang J.M. Genome-wide analysis reveals signatures of selection for important traits in domestic sheep from different ecoregions. BMC Genomics, 2016, 17(1): 863 ( ).
- DOI: 10.1186/s12864-016-3212-2
- Demars J., Cano M., Drouilhet L., Plisson-Petit F., Bardou P., Fabre S., Servin B., Sarry J., Woloszyn F., Mulsant P., Foulquier D., Carrière F., Aletru M., Rodde N., Cauet S., Bouchez O., Pirson M., Tosser-Klopp G., Allain D. Genome-wide identification of the mutation underlying fleece variation and discriminating ancestral hairy species from modern woolly sheep. Molecular Biology and Evolution, 2017, 34(7): 1722-1729 ( ).
- DOI: 10.1093/molbev/msx114
- Mcrae K.M., McEwan J.C., Dodds K.G., Gemmell N.J. Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. BMC Genomics, 2014, 15: 637 ( ).
- DOI: 10.1186/1471-2164-15-637
- Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population-structure. Evolution, 1984, 38(6): 1358-1370 ( ).
- DOI: 10.2307/2408641
- Porto-Neto L.R., Lee S.H., Lee H.K., Gondro C. Detection of signatures of selection using FST. In: Methods in molecular biology (methods and protocols) /C. Gondro, J. van der Werf, B. Hayes (eds.). Humana Press, Totowa, NJ, 2013, vol. 1019: 423-436 ( ).
- DOI: 10.1007/978-1-62703-447-0_19
- Fariello M.I., Boitard S., Naya H., SanCristobal M., Servin B. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics, 2013, 193(3): 929-941 ( ).
- DOI: 10.1534/genetics.112.147231
- Moioli B., Pilla F., Ciani E. Signatures of selection identify loci associated with fat tail in sheep. Journal of Animal Science, 2015, 93(10): 4660-4669 ( ).
- DOI: 10.2527/jas.2015-9389
- Mikawa S., Sato S., Nii M., Morozumi T., Yoshioka G., Imaeda N., Yamaguchi T., Hayashi T., Awata T. Identification of a second gene associated with variation in vertebral number in domestic pigs. BMC Genet., 2011, 12: 5 ( ).
- DOI: 10.1186/1471-2156-12-5
- Kim E.S., Elbeltagy A.R., Aboul-Naga A.M., Rischkowsky B., Sayre B., Mwacharo J.M., Rothschild M.F. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity, 2016, 116: 255-264 ( ).
- DOI: 10.1038/hdy.2015.94
- Pan Z., Li S., Liu Q., Wang Z., Zhou Z., Di R., An X., Miao B., Wang X., Hu W., Guo X., Lv S., Li F., Ding G., Chu M., Li Y. Rapid evolution of a retro-transposable hotspot of ovine genome underlies the alteration of BMP2 expression and development of fat tails. BMC Genomics, 2019, 20(1): 261 ( ).
- DOI: 10.1186/s12864-019-5620-6
- Mastrangelo S., Moioli B., Ahbara A., Latairish S., Portolano B., Pilla F, Ciani E. Genome-wide scan of fat-tail sheep identifies signals of selection for fat deposition and adaptation. Animal Production Science, 2018, 59(5): 835-848 ( ).
- DOI: 10.1071/AN17753
- Mastrangelo S., Bahbahani H., Moioli B., Ahbara A., Al Abri M., Almathen F., da Silva A., Belabdi I., Portolano B., Mwacharo J.M., Hanotte O., Pilla F., Ciani E. Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PLoS ONE, 2019, 14(6): e0209632 ( ).
- DOI: 10.1371/journal.pone.0209632
- Yuan Z., Liu E., Liu Z., Kijas J.W., Zhu C., Hu S., Ma X., Zhang L., Du L., Wang H., Wei C. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim. Genet., 2017, 48(1): 55-66 ( ).
- DOI: 10.1111/age.12477
- Szatkowski C., Vallet J., Dormishian M., Messaddeq N., Valet P., Boulberdaa M., Metzger D., Chambon P., Nebigil C.G. Prokineticin receptor 1 as a novel suppressor of preadipocyte proliferation and differentiation to control obesity. PLoS ONE, 2013, 8(12): e81175 ( ).
- DOI: 10.1371/journal.pone.0081175
- Liu C.T., Monda K.L., Taylor K.C. et al. Genome-wide association of body fat distribution in African ancestry populations suggests new loci. PLoS Genetics, 2013, 9(8): e1003681 ( ).
- DOI: 10.1371/journal.pgen.1003681
- Mallo M., Wellik D.M., Deschamps J. Hox genes and regional patterning of the vertebrate body plan. Developmental Biology, 2010, 344(1): 7-15 ( ).
- DOI: 10.1016/j.ydbio.2010.04.024
- Yurchenko A.A., Deniskova T.E., Yudin N.S., Dotsev A.V., Khamiruev T.N., Selionova M.I., Egorov S.V., Reyer H., Wimmers K., Brem G., Zinovieva N.A., Larkin D.M. High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia. BMC Genomics, 2019, 20(Suppl 3): 294 ( ).
- DOI: 10.1186/s12864-019-5537-0
- Ahbara A., Bahbahani H., Almathen F., Al Abri M., Agoub M.O., Abeba A., Kebede A., Musa H.H., Mastrangelo S., Pilla F., Ciani E., Hanotte O., Mwacharo J.M. Genome-wide variation and putative candidate regions and genes associated with fat deposition and tail morphology in Ethiopian indigenous sheep. Front. Genet., 2019, 9: 699 ( ).
- DOI: 10.3389/fgene.2018.00699
- Ahbara A., Musa H., Clark E., Robert C., Watson M., Abeba A., Latairish S., Hanotte O., Mwacharo J. OP196 indigenous African sheep genomes reveal insights on fat-tail deposition and morphology. Proc. 37th International Conference on Animal Genetics. Lleida, Spain, 2019: 56.
- Zhi D., Da L., Liu M., Cheng C., Zhang Y., Wang X., Li X., Tian Z., Yang Y., He T., Long X., Wei W., Cao G. Whole genome sequencing of Hulunbuir short-tailed sheep for identifying candidate genes related to the short-tail phenotype. G3: Genes, Genomes, Genetics, 2018, 8(2): 377-383 ( ).
- DOI: 10.1534/g3.117.300307
- Liu Z., Wang H., Liu R., Mingming W.U., Zhang S., Zhang L., Zhao F., Du L., Wei C. Genome-wide detection of selection signatures of distinct tail types in sheep popula-tions. Acta Veterinaria et Zootechnica Sinica, 2015, 46(10): 1721-1732 ( ).
- DOI: 10.11843/j.issn.0366-6964.2015.10.004
- Mwacharo J.M., Kim E.S., Elbeltagy A.R., Aboul-Naga A.M., Rischkowsky B.A., Rothschild M.F. Genomic footprints of dryland stress adaptation in Egyptian fat-tail sheep and their divergence from East African and western Asia cohorts. Sci. Rep., 2017, 7(1): 17647 ( ).
- DOI: 10.1038/s41598-017-17775-3
- Сермягин А.А., Гладырь Е.А., Харитонов С.Н., Ермилов А.Н., Стрекозов Н.И., Брем Г., Зиновьева Н.А. Полногеномный анализ ассоциаций с продуктивными и репродуктивными признаками у молочного скота в российской популяции голштинской породы. Сельскохозяйственная биология, 2015, 51(2): 182-193 ( ).
- DOI: 10.15389/agrobiology.2016.2.182rus
- Jonas E., Thomson P.C., Raadsma H.W. Genome-wide association study and fine mapping of QTL on OAR 21 for body weight in sheep. Proc. 9th World Congress on Genetics Applied to Livestock Production. Leipzig, 2010.
- Kominakis A., Hager-Theodorides A.L., Zoidis E., Saridaki A., Antonakos G., Tsiamis G. Combined GWAS and 'guilt by association'-based prioritization analysis identifies functional candidate genes for body size in sheep. Genet. Sel. Evol., 2017, 49: 41 ( ).
- DOI: 10.1186/s12711-017-0316-3
- Xu S.S., Ren X., Yang G.L., Xie X.L., Zhao Y.X., Zhang M., Shen Z.Q., Ren Y.L., Gao L., Shen M., Kantanen J., Li M.H. Genome-wide association analysis identifies the genetic basis of fat deposition in the tails of sheep (Ovis aries). Anim. Genet., 2017, 48(5): 560-569 ( ).
- DOI: 10.1111/age.12572
- Bhanuprakash V., Chhotaray S., Pruthviraj D.R., Rawat C., Karthikeyan A., Panigrahi M. Copy number variation in livestock: a mini review. Veterinary World, 2018, 11(4): 535-541 ( ).
- DOI: 10.14202/vetworld.2018.535-541
- Stranger B.E., Forrest M.S., Dunning M., Ingle C.E., Beazley C., Thorne N., Redon R., Bird C.P., de Grassi A., Lee C., Tyler-Smith C., Carter N., Scherer S.W., Tavaré S., Deloukas P., Hurles M.E., Dermitzakis E.T. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science, 2007, 315(5813): 848-853 ( ).
- DOI: 10.1126/science.1136678
- Liu G.E., Ventura M., Cellamare A., Chen L., Cheng Z., Zhu B., Li C., Song J., Eichler E.E. Analysis of recent segmental duplications in the bovine genome. BMC Genomics, 2009, 10: 571 ( ).
- DOI: 10.1186/1471-2164-10-571
- Zhang F., Gu W., Hurles M.E., Lupski J.R. Copy number variation in human health, disease, and evolution. Annual Review of Genomics and Human Genetics, 2009, 10: 451-481 ( ).
- DOI: 10.1146/annurev.genom.9.081307.164217
- Fontanesi L., Beretti F., Martelli P.L., Colombo M., Dall'Olio S., Occidente M., Portolano B., Casadio R., Matassino D., Russo V. A first comparative map of copy number variations in the sheep genome. Genomics, 2011, 97(3): 158-165 ( ).
- DOI: 10.1016/j.ygeno.2010.11.005
- Jenkins G.M., Goddard M.E., Black M.A., Brauning R., Auvray B., Dodds K.G., Kijas J.W., Cockett N., McEwan J.C. Copy number variants in the sheep genome detected using multiple approaches. BMC Genomics, 2016, 17: 441 ( ).
- DOI: 10.1186/s12864-016-2754-7
- Liu J., Zhang L., Xu L., Ren H., Lu J., Zhang X., Zhang S., Zhou X., Wei C., Zhao F., Du L. Analysis of copy number variations in the sheep genome using 50K SNP BeadChip array. BMC Genomics, 2013, 14: 229 ( ).
- DOI: 10.1186/1471-2164-14-229
- Ma Y., Zhang Q., Lu Z., Zhao X., Zhang Y. Analysis of copy number variations by SNP50 BeadChip array in Chinese sheep. Genomics, 2015, 106(5): 295-300 ( ).
- DOI: 10.1016/j.ygeno.2015.08.001
- Zhu C., Fan H., Yuan Z., Hu S., Ma X., Xuan J., Wang H., Zhang L., Wei C., Zhang Q., Zhao F., Du L. Genome wide detection of CNVs in Chinese indigenous sheep with different types of tails using ovine high-density 600K SNP arrays. Scientific Reports, 2016, 6: 27822 ( ).
- DOI: 10.1038/srep27822
- Ma Q., Liu X., Pan J., Ma L., Ma Y., He X., Zhao Q., Pu Y., Li Y., Jiang L. Genome-wide detection of copy number variation in Chinese indigenous sheep using an ovine high-density 600 K SNP array. Scientific Reports, 2017, 7: 912 ( ).
- DOI: 10.1038/s41598-017-00847-9
- Hoeijmakers W.A., Bártfai R., Stunnenberg H.G. Transcriptome analysis using RNA-Seq. In: Malaria. Methods in molecular biology (methods and protocols) /R. Ménard (ed.). Humana Press, Totowa, NJ, 2012, vol. 923: 221-239 ( ).
- DOI: 10.1007/978-1-62703-026-7_15
- Shendure J. The beginning of the end for microarrays? Nature Methods, 2008, 5(7): 585-587 ( ).
- DOI: 10.1038/nmeth0708-585
- Oshlack A., Robinson M.D., Young M.D. From RNA-seq reads to differential expression results. Genome Biol., 2010, 11(12): 220 ( ).
- DOI: 10.1186/gb-2010-11-12-220
- Wang X., Zhou G., Xu X., Geng R., Zhou J., Yang Y., Yang Z., Chen Y. Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep. Gene, 2014, 549(2): 252-257 ( ).
- DOI: 10.1016/j.gene.2014.07.072
- Kang D., Zhou G., Zhou S., Zeng J., Wang X., Jiang Y., Yang Y., Chen Y. Comparative transcriptome analysis reveals potentially novel roles of Homeobox genes in adipose deposition in fat-tailed sheep. Sci. Rep., 2017, 7(1): 14491 ( ).
- DOI: 10.1038/s41598-017-14967-9
- Ma L., Li Z., Cai Y., Xu H., Yang R., Lan X. Genetic variants in fat- and short-tailed sheep from high-throughput RNA-sequencing data. Anim. Genet., 2018, 49(5): 483-487 ( ).
- DOI: 10.1111/age.12699
- Ma L., Zhang M., Jin Y., Erdenee S., Hu L., Chen H., Cai Y., Lan X. Comparative transcriptome profiling of mRNA and lncRNA related to tail adipose tissues of sheep. Front. Genet., 2018, 9: 365 ( ).
- DOI: 10.3389/fgene.2018.00365
- Li B., Qiao L., An L., Wang W., Liu J., Ren Y., Pan Y., Jing J., Liu W. Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition. BMC Genomics, 2018, 19(1): 338 ( ).
- DOI: 10.1186/s12864-018-4747-1
- Avilés C., Polvillo O., Peña F., Juárez M., Martínez A.L., Molina A. Associations between DGAT1, FABP4, LEP, RORC, and SCD1 gene polymorphisms and fat deposition in Spanish commercial beef. Journal of Animal Science, 2013, 91(10): 4571-4577 ( ).
- DOI: 10.2527/jas.2013-6402
- Xu Q.L., Tang G.W., Zhang Q.L., Huang Y.K., Liu Y.X., Quan K., Zhu K.Y., Zhang C.X. The FABP4 gene polymorphism is associated with meat tenderness in three Chinese native sheep breeds. Czech Journal of Animal Science, 2011, 56(1): 1-6.
- Bokor S., Legry V., Meirhaeghe A., Ruiz J.R., Mauro B., Widhalm K., Manios Y., Amouyel P., Moreno L.A., Molnàr D., Dallongeville J., HELENA Study group. Single-nucleotide polymorphism of CD36 locus and obesity in European adolescents. obesity, 2010, 18(7): 1398-1403 ( ).
- DOI: 10.1038/oby.2009.412
- Kern P.A., Di Gregorio G.B., Lu T., Rassouli N., Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes, 2003, 52(7): 1779-1785 ( ).
- DOI: 10.2337/diabetes.52.7.1779
- Zhang L., Yang M., Li C., Xu Y., Sun J., Lei C., Lan X., Zhang C., Chen H. Identification and genetic effect of a variable duplication in the promoter region of the cattle ADIPOQ gene. Anim. Genet., 2014, 45(2): 171-179 ( ).
- DOI: 10.1111/age.12112
- Erdenee S., Li J., Kang Z., Xu H., Zang R., Cao X., Yang J., Cai Y., Lan X. Sheep zinc finger proteins 395 (ZNF395): insertion/deletion variations, associations with growth traits, and mRNA expression. Animal Biotechnology, 2019, 19: 1-8 ( ).
- DOI: 10.1080/10495398.2019.1585865
- Bakhtiarizadeh M.R., Moradi-Shahrbabak M., Ebrahimie E. Underlying functional genomics of fat deposition in adipose tissue. Gene, 2013, 521(1): 122-128 ( ).
- DOI: 10.1016/j.gene.2013.03.045
- Ruixia X., Lei G., Weili Z., Wei Z., Guangchao S., Shangquan G., Guoqing S. [Analysis of FABP4 expression pattern in rump fat deposition and metabolism of Altay sheep]. Yi Chuan, 2015, 37(2): 174-182 ( ).
- DOI: 10.16288/j.yczz.14-369
- Bakhtiarizadeh M.R., Salami S.A. Identification and expression analysis of long noncoding RNAs in fat-tail of sheep breeds. G3: Genes, Genomes, Genetics, 2019, 9(4): 1263-1276 ( ).
- DOI: 10.1534/g3.118.201014
- Jiao X.L., Jing J.J., Qiao L.Y., Liu J.H., Li L.A., Zhang J., Jia X.L., Liu W.Z. Ontogenetic expression of Lpin2 and Lpin3 genes and their associations with traits in two breeds of Chinese fat-tailed sheep. Asian-Australasian Journal of Animal Sciences, 2016, 29(3): 333-342 ( ).
- DOI: 10.5713/ajas.15.0467
- Zakariapour Bahnamiri H., Ganjkhanlou M., Zali A., Sadeghi M., Moradi Shahrbabak H., Nehzati Paghaleh G.A. Expression of genes related to liver fatty acid metabolism in fat-tailed and thin-tailed lambs during negative and positive energy balances. J. Anim. Physiol. Anim. Nutr., 2019, 103(2): 427-435 ( ).
- DOI: 10.1111/jpn.13036
- Zeng J., Zhou S.W., Zhao J., Jin M.H., Kang D.J., Yang Y.X., Wang X.L., Chen Y.L. Role of OXCT1 in ovine adipose and preadipocyte differentiation. Biochemical and Biophysical Research Communications, 2019, 512(4): 779-785 ( ).
- DOI: 10.1016/j.bbrc.2019.03.128
- Ledur M.C., Navarro N., Pérez-Enciso M. Large-scale SNP genotyping in crosses between outbred lines: how useful is it? Heredity, 2009, 105(2): 173-182 ( ).
- DOI: 10.1038/hdy.2009.149