Значение адренорецепторов артерий при симпатолизисе в регуляции кровотока в работающих мышцах
Автор: Ананьев Владимир Николаевич, Ананьев Георгий Владимирович, Ананьева Ольга Васильевна
Журнал: Человек. Спорт. Медицина @hsm-susu
Рубрика: Физиология
Статья в выпуске: 2 т.23, 2023 года.
Бесплатный доступ
Цель. Изучение физиологических механизмов увеличения кровотока в работающих поперечно-полосатых мышцах при функциональной блокаде влияния симпатической нервной системы и ее медиатора норэпинефрина на адренорецепторы артерий мышц при симпатолизисе. Материалы и методы. Эксперименты провели на кроликах под наркозом. В опытах было две группы животных: контрольная (n = 20) и опытная (n = 15). В опытной группе проводили моделирование работы мышц задней конечности при сокращении мышц с помощью электростимулятора. В контрольной группе электростимулятор не применялся. В контрольной и опытной группах животных по одной методике перфузировали насосом через бедренную артерию мышцы задней конечности. На выходе насоса стоял датчик давления фирмы «Моторола» MPX5100DP, и через аналогово-цифровой преобразователь давление регистрировалось компьютером. Изменение давления в бедренной артерии на выходе насоса характеризовало прессорную активность а1-адренорецепторов артерий на введение норэпинефрина в контрольной группе и на фоне сокращения мышц электростимулятором в опытной группе. Результаты. Исследование показало, что на фоне сокращения мышц значительно снижается сосудосуживающее действие норэпинефрина при стимулировании а1-адренорецепторов артерий конечности. Наши опыты показали, что при низких дозах (0,5 мкг/кг) сосудосуживающее действие норэпинефрина на артерии конечности при сокращении мышц уменьшилось в 21,7 раза. При средних дозах норэпинефрина (5 мкг/кг) симпатолизис уменьшился и стал в 5,7 раза меньше контроля. При высоких дозах норэпинефрина (30 мкг/кг) симпатолизис при сокращении мышц уменьшил его сосудосуживающее действие в 1,9 раза. Заключение. Выявленные эффекты фармакокинетики и фармакодинамики норэпинефрина на а1-адренорецепторы артерий раскрывают новые механизмы симпатолизиса в регуляции кровотока в работающих мышцах за счет уменьшения чувствительности а1-адренорецепторов. Величина симпатолизиса уменьшается с увеличением дозы норэпинефрина.
Кролики, симпатолизис, электростимуляция мышц, фармакокинетика и фармакодинамика норэпинефрина, а1-адренорецепторы артерий
Короткий адрес: https://sciup.org/147240965
IDR: 147240965 | DOI: 10.14529/hsm230208
Список литературы Значение адренорецепторов артерий при симпатолизисе в регуляции кровотока в работающих мышцах
- Baross A.W., Kay A.D., Baxter B.A. et al. Effects of Isometric Resistance Training and Detraining on Ambulatory Blood Pressure and Morning Blood Pressure Surge in Young Normotensives. Front Physiology, 2022, no. 13, 958135. DOI: 10.3389/fphys.2022.958135
- Cooper I.R., Just T.P., DeLorey D.S. β-Adrenoreceptors do not Oppose Sympathetic Vasoconstriction in Resting and Contracting Skeletal Muscle of Male Rats. Appl Physiology Nutr Metab., 2019, no. 44 (11), pp. 1230–1236. DOI: 10.1139/apnm-2019-0130
- Craig J.C., Broxterman R.M., La Salle D.T. et al. The Role of Endothelin A Receptors in Peripheral Vascular Control at Rest and During Exercise in Patients with Hypertension. Journal Physiology, 2020, no. 598 (1), pp. 71–84. DOI: 10.1113/JP279077
- DeLorey D.S., Clifford P.S. Does Sympathetic Vasoconstriction Contribute to Metabolism: Perfusion Matching in Exercising Skeletal Muscle? Front Physiology, 2022, no. 13, 980524. DOI: 10.3389/fphys.2022.980524
- DeLorey D.S. Sympathetic Vasoconstriction in Skeletal Muscle: Modulatory Effects of Aging, Exercise Training, and Sex. Appl Physiology Nutr Metab., 2021, no. 46 (12), pp. 1437–1447. DOI: 10.1139/apnm-2021-0399
- Docherty J.R. The Pharmacology of α1-Adrenoceptor Subtypes. European Journal Pharmacology, 2019, no. 855, pp. 305–320. DOI: 10.1016/j.ejphar.2019.04.047
- Dulaney C.S., Heidorn C.E., Singer T.J., McDaniel J. Mechanisms that Underlie Blood Flow Regulation at Rest and During Exercise. Advansed Physiology Education, 2023, no. 47 (1), pp. 26–36. DOI: 10.1152/advan.00180.2022
- Gentilin A., Tarperi C., Skroce K. et al. Effect of Acute Sympathetic Activation on Leg Vasodilation before and after Endurance Exercise. Journal Smooth Muscle Reserch, 2021, no. 57 (0), pp. 53–67. DOI: 10.1540/jsmr.57
- Gliemann L., Carter H. Sympatholysis: the More we Learn, the Less we Know. Journal Physiology, 2018, no. 596 (6), pp. 963–964. DOI: 10.1113/JP275513
- Green D.J., Hopman M.T.E., Padilla J. et al. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiology Rev., 2017, no. 97 (2), pp. 495–528. DOI: 10.1152/physrev.00014.2016
- Hearon C.M.Jr., Richards J.C., Racine M.L. et al. Augmentation of Endothelium-Dependent Vasodilatory Signalling Improves Functional Sympatholysis in Contracting Muscle of Older Adults. Journal Physiology, 2020, no. 598 (12), pp. 2323–2336. DOI: 10.1113/JP279462
- Hughes W.E., Kruse N.T., Ueda K., Casey D.P. Habitual Exercise Training in Older Adults Offsets the Age-Related Prolongation in Leg Vasodilator Kinetics During Single-Limb Lower Body Exercise. Journal Appl Physiology, 2018, no. 125 (3), pp. 746–754. DOI: 10.1152/japplphysiol.00235.2018
- Just T.P., DeLorey D.S. Sex Differences in Sympathetic Vasoconstrictor Responsiveness and Sympatholysis. Journal Appl Physiology, 2017, no. 123 (1), pp. 128–135. DOI: 10.1152/japplphysiol.00139.2017
- Limberg J.K., Casey D.P., Trinity J.D. et al. Assessment of Resistance Vessel Function in Human Skeletal Muscle: Guidelines for Experimental Design, Doppler Ultrasound, and Pharmacology. American Journal Physiology Heart Circ, 2020, no. 318 (2), pp. 301–325. DOI: 10.1152/ajpheart.00649.2019
- Manukhin B.N., Anan'ev V.N., Anan'eva O.V. Effect of Rabbit Adaptation to Cold on the Depressor Muscarinic Cholinergic Reaction of the Arterial Pressure of the Hind Limb Vessels and the Small Intestine in Situ and the Systemic Arterial Pressure. Izv Akad Nauk Ser Biol., 2010, no. 3, pp. 363–369. PMID: 20583620
- Novielli-Kuntz N.M., Lemaster K.A., Frisbee J.C., Jackson D.N. Neuropeptide Y1 and alpha-1 Adrenergic Receptor-Mediated Decreases in Functional Vasodilation in Gluteus Maximus Microvascular Networks of Prediabetic Mice. Physiology Rep., 2018, no. 6 (13), e13755. DOI: 10.14814/phy2.13755
- Remensnyder J., Mitchell J.H., Sarnoff S.J. Functional Sympatholysis During Muscular Activity. Observations on Influence of Carotid Sinus on Oxygen Uptake. Circ Res., 1962, no. 11, pp. 370–380. DOI: 10.1161/01.res.11.3.370
- Teixeira A.L., Garland M., Lee J.B. et al. Assessing Functional Sympatholysis During Rhythmic Handgrip Exercise Using Doppler Ultrasound and Near-Infrared Spectroscopy: Sex Differences and Test-Retest Reliability. American Journal Physiology Regular Integr Comp Physiology, 2022, no. 323 (5), pp. 810–821. DOI: 10.1152/ajpregu.00123.2022
- Terwoord J.D., Racine M.L., Hearon C.M. Jr. et al. ATP and Acetylcholine Interact to Modulate Vascular Tone and α1-Adrenergic Vasoconstriction in Humans. Journal Appl Physiology, 2021, no. 131 (2), pp. 566–574. DOI: 10.1152/japplphysiol.00205.2021
- Van der Horst J., Møller S., Kjeldsen S.A.S. et al. Functional Sympatholysis in Mouse Skeletal Muscle Involves Sarcoplasmic Reticulum Swelling in Arterial Smooth Muscle Cells. Physiology Rep., 2021, no. 9 (23), e15133. DOI: 10.14814/phy2.15133
- Venturelli M., Layec G., Trinity J. et al. Single Passive Leg Movement-Induced Hyperemia: a Simple Vascular Function Assessment Without a Chronotropic Response. Journal Appl Physiology, 2017, no. 122 (1), pp. 28–37.
- Venturelli M., Rossman M.J., Ives S.J. et al. Passive Leg Movement-Induced Vasodilation and Exercise-Induced Sympathetic Vasoconstriction. Auton Neuroscience, 2022, no. 239, 102969. DOI: 10.1016/j.autneu.2022.102969. Epub 2022 Mar 4. PMID: 35259576.