A Krengel type theorem for compact operators between locally solid vector lattices

Автор: Zabeti O.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 3 т.25, 2023 года.

Бесплатный доступ

Suppose X and Y are locally solid vector lattices. A linear operator T:X→Y is said to be nb-compact provided that there exists a zero neighborhood U⊆X, such that T(U) is compact in Y; T is bb-compact if for each bounded set B⊆X, T(B) is compact. These notions are far from being equivalent, in general. In this paper, we introduce the notion of a locally solid AM-space as an extension for AM-spaces in Banach lattices. With the aid of this concept, we establish a variant of the known Krengel's theorem for different types of compact operators between locally solid vector lattices. This extends [1, Theorem 5.7] (established for compact operators between Banach lattices) to different classes of compact operators between locally solid vector lattices.

Еще

Compact operator, the krengel theorem, locally solid am-space

Короткий адрес: https://sciup.org/143180253

IDR: 143180253   |   DOI: 10.46698/g6863-7709-2981-j

Список литературы A Krengel type theorem for compact operators between locally solid vector lattices

  • Aliprantis, C. D. and Burkinshaw, O. Positive Operators, Springer, 2006.
  • Zabeti, O. AM-Spaces from a Locally Solid Vector Lattice Point of View with Applications, Bulletin of the Iranian Mathematical Society, 2021, vol. 47, pp. 1559-1569. DOI: 10.1007/s41980-020-00458-7
  • Aliprantis, C. D. and Burkinshaw, O. Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs, vol. 105, Providence, American Mathematical Society, 2003.
  • Jameson, G. J. O. Topological M-Spaces, Mathematische Zeitschrift, 1968, vol. 103, pp. 139-150. DOI: 10.1007/BF01110626
  • Zabeti, O. The Banach-Saks Property from a Locally Solid Vector Lattice Point of View, Positivity, 2021, vol. 25, pp. 1579-1583. DOI: 10.1007/s11117-021-00830-9
  • Jameson, G. J. O. Ordered Linear Spaces, Lecture Notes in Mathematics, vol. 141, Springer, 1970.
  • Erkursun-Ozcan, N., Anil Gezer, N. and Zabeti, O. Spaces of uτ-Dunford-Pettis and uτ-Compact Operators on Locally Solid Vector Lattices, Matematicki Vesnik, 2019, vol. 71, no. 4, pp. 351-358. EDN: YKKWSP
  • Troitsky, V. G. Spectral Radii of Bounded Operators on Topological Vector Spaces, PanAmerican Mathematical Journal, 2001, vol. 11, no. 3, pp. 1-35.
Еще
Статья научная