A short proof of completion theorem for metric spaces
Бесплатный доступ
The completion theorem for metric spaces is always proven using the space of Cauchy sequences. In this paper, we give a short and alternative proof of this theorem via Zorn’s lemma. First, we give a way of adding one point to an incomplete space to get a chosen non-convergent Cauchy sequence convergent. Later, we show that every metric space has a completion by constructing a partial ordered set of metric spaces.
Completion theorem, metric space, complete space, zorn's lemma
Короткий адрес: https://sciup.org/147232863
IDR: 147232863 | DOI: 10.14529/mmph210209
Список литературы A short proof of completion theorem for metric spaces
- Lusternik, L.A. Elements of functional analysis / L.A. Lusternik, V.I. Sobolev. - Hindustan Publishing Corp., Delhi and Halsted Press, New York, 1974. - 360 p.
Краткое сообщение