A Survey on the impact of Connection-Aware Congestion Identification in RLNC-Based Networks on Quality of Service
Автор: Syed Abid Husain, Baswaraj Gadgay, Shubhangi D.C.
Журнал: International Journal of Wireless and Microwave Technologies @ijwmt
Статья в выпуске: 4 Vol.14, 2024 года.
Бесплатный доступ
Wireless multicast networks, especially in the domains of IoT, 5G, and e-health, are experiencing a growing adoption of random linear network coding (RLNC). Nevertheless, the exponential growth of data can lead to congestion problems. This paper presents a review on novel technique called singular value decomposition (SVD) for the identification of network congestion. When SVD combines with statistical concepts like linear regression can to effectively handle large datasets and conduct comprehensive data analytics. The svd improves network performance and reliability by proactively identifying and mitigating congestion. Additionally, it improves the efficiency of data transmission and delivery in different application scenarios.
RLNC(random linear network coding), congestion, SVD(singular value decomposition), LR(linear regression), detection
Короткий адрес: https://sciup.org/15019264
IDR: 15019264 | DOI: 10.5815/ijwmt.2024.04.04
Список литературы A Survey on the impact of Connection-Aware Congestion Identification in RLNC-Based Networks on Quality of Service
- Vandana Kushwaha, Ratneshwer Gupta,Congestion control for high-speed wired network: A systematic literature review,Journal of Network and Computer Applications,Volume 45, (2014), Pages 62-78, ISSN 1084-8045, https://doi.org/ 10.1016/j.jnca.2014.07.005.
- Amit Grover, R. Mohan Kumar, Mohit Angurala, Mehtab Singh, Anu Sheetal, R. Maheswar,Rate aware congestion control mechanism for wireless sensor networks,Alexandria Engineering Journal,Volume 61, Issue 6,(2022),Pages 4765-4777,ISSN 1110 -0168, https://doi.org /10.1016/j.aej.2021.10.032.
- Amin Shahraki, Amir Taherkordi, Øystein Haugen, Frank Eliassen, Clustering objectives in wireless sensor networks: A survey and research direction analysis, Comput. Netw. 180 (2020) 107376.
- J. Liu, F. Liu and N. Ansari, "Monitoring and analyzing big traffic data of a large-scale cellular network with Hadoop," in IEEE Network, vol. 28, no. 4, pp. 32-39, July-August 2014, doi:10.1109/ MNET. 2014. 6863129.
- Se-Hee Han, Myung-Sup Kim, Hong-Taek Ju, James Won-Ki Hong, The architecture of NG-MON: A passive network monitoring system for high-speed IP networks, in: International Workshop on Distributed Systems: Operations and Management, Springer, 2002, pp. 16–27.
- Ehrlich, Marco & Biendarra, Alexander & Trsek, Henning & Wojtkowiak, Emanuel & Jasperneite, Juergen. (2017). “Passive Flow Monitoring of Hybrid Network Connections regarding Quality of Service Parameters for the Industrial Automation”
- Yousaf, M.M., Welzl, M., & Yener, B. (2008). Accurate Shared Bottleneck Detection Based On SVD and Outliers Detection.TECHNICAL REPORT - NSG-DPS-UIBK-01, AUGUST 2008
- Gul, Raja Sana; Ahmad, Dr Arbab Waheed (2023). Intelligent Congestion Control In Internet of Vehicles (IoV) employing Network Slicing in Beyond 5G (B5G) Architecture. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.23690049.v1
- Chakchai So-In, A survey of network traffic monitoring and analysis tools, in: Cse 576m computer system analysis project, Washington University in St. Louis, 2009.
- Shahbaz Rezaei, Xin Liu, Deep learning for encrypted traffic classification: An overview, IEEE Commun. Mag. 57 (5) (2019) 76–81.
- Sadaf Mokhtari,Hamid Barati, Ali Barati,"A hierarchical congestion control method in clusteredinternet of things",The Journal of Supercomputing (2022) 78:11830–11855 https://doi.org /10.1007 /s11227-022-04340-7
- ElRakabawy, S.M., Lindemann, C. (2009).,"Practical Rate-Based Congestion Control for Wireless Mesh Networks",David, K., Geihs, K. (eds) Kommunikation in Verteilten Systemen (KiVS). Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92666-5_1
- Tsuzuki, S., Yanagisawa, D., & Nishinari, K. (2022). Effect of congestion avoidance due to congestion information provision on optimizing agent dynamics on an endogenous star network topology. Scientific Reports, 12(1), 1-16. https://doi.org/10.1038/s41598-022-26710-0
- Syed abidhusain, Baswaraj Gadgay (2023),"Effect of link failure on QoS parameters under the influence of field and generation size in wireless network",Tuijin Jishu/Journal of Propulsion Technology ISSN: 1001-4055 Vol. 44 No. 3
- Sreekrishna Pandi and Frank Gabriel and Juan A. Cabrera and Simon Wunderlich and Martin Reisslein and Frank H. P.Pandi,”PACE: Redundancy Engineering in RLNC for Low-Latency Communication”(2017)IEEE Access,volume 5, pages:20477-20493
- M. Pawar, N. Patidar, K. Khan, S. K. Khan and A. Umar Khan, "Congestion Avoidance Mechanism in Adhoc On-Demand Distance Vector Routing Protocol for Mobile AdHoc Networks," 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 2022, pp. 738-742, doi: 10.1109/ICEARS53579.2022.9752198.
- Douglas C.,Elizabeth A,G.Geoffrey,” Introduction to linear regression analysis” Wiley5th edition.