Adaptive estimation of a moving object trajectory using sequential hypothesis testing

Бесплатный доступ

The present paper addresses the problem of adaptive estimation of a moving object trajectory and detection of changes in the motion mode. It is supposed that an object moves along a complex trajectory and at known discrete-time instants it may change its motion to one of three possible modes: a uniform straight line motion or a uniform anticlockwise/clockwise circular motion. We propose a new algorithm for adaptive trajectory estimation that combines a hybrid linear stochastic model of an object trajectory with a bank of competitive Kalman filters and a decision rule based on a sequential hypothesis testing. A detailed description of the decision rule and pseudocode of the proposed algorithm are given. The software implementation of the algorithm is made in Matlab. A numerical example of adaptive estimation of the motion of an object along a complex trajectory consisting of nine different pieces is considered. We have conducted computational experiments with different levels of noise in the measurements. The results confirm the effectiveness of the proposed algorithm.

Еще

Adaptive estimation, moving object, sequential hypothesis testing, aдаптивное оценивание

Короткий адрес: https://sciup.org/147232923

IDR: 147232923   |   DOI: 10.14529/mmp190115

Список литературы Adaptive estimation of a moving object trajectory using sequential hypothesis testing

  • Kim, S. Implementation of Tracking and Capturing a Moving Object Using a Mobile Robot / S. Kim, J. Park, J. Lee // International Journal of Control, Automation and Systems. - 2005. - V. 3, № 3. - P. 444-452.
  • Hassani, V. A Novel Methodology for Adaptive Wave Filtering of Marine Vessels: Theory and Experiments / V. Hassani, A.M. Pascoal, A.J. Sorensen // Proceedings of the 52nd Annual Conference on Decision and Control (CDC), Florence, Italy. - 2013. - P. 6162-6167.
  • Bar-Shalom, Y. Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software / Y. Bar-Shalom, X.R. Li, T. Kirubarajan. - New Jersey: John Wiley and Sons, 2002.
  • Семушин, И.В. Моделирование и оценивание траектории движущегося объекта / И.В. Семушин, А.В. Цыганов, Ю.В. Цыганова, А.В. Голубков, С.Д. Винокуров // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2017. - Т. 10, № 3. - С. 108-119.
  • Wald, A. Sequential Analysis / A. Wald. - New York: John Wiley and Sons, 1947.
  • Голубков, А.В. Адаптивное оценивание параметров движения объекта на основе гибридной стохастической модели / А.В. Голубков, А.В. Цыганов, Ю.В. Цыганова // Сборник докладов IV Международной конференции Информационные технологии и нанотехнологии (ИТНТ 2018), Самара, Россия. - 2018. - С. 2064-2074.
Еще
Краткое сообщение