Молекулярные и клеточные механизмы симбиоза. Рубрика в журнале - Сельскохозяйственная биология

Quorum Sensing и нодуляционная конкурентоспособность ризобий при инфицировании бобовых растений
Статья научная
Один из основных симбиотических признаков ризобий - способность конкурировать за образование клубеньков у бобовых растений, проявляемая при совместной инокуляции хозяев несколькими штаммами (нодуляционная конкурентоспособность - НКС). Закономерности регуляции НКС остаются малоизученными, что затрудняет использование полученных данных в биотехнологических исследованиях, направленных на повышение эффективности биопрепаратов ризобий. Нами создана математическая модель нодуляционной конкурентоспособности ризобий (НКС) для описания мультиштаммовой инокуляции бобовых растений (НКС-модель). В НКС-модели мы учли, что в соответствии с положением о Quorum Sensing регулировании (QS-регулировании) в почвенных нишах ограничивается не только число бактерий в нише, но и миграция клеток в соседние ниши. НКС-модель представляет собой нелинейную степенную зависимость миграции клеток из ниши от пространственной плотности клеток в нише (величина степени меньше, чем 1). Согласно формуле НКС-модели, относительная доля мигрирующих клеток из ниши обитания уменьшается с ростом плотности клеток в нише. Мы предполагаем, что после мультиштаммовой инокуляции в ризосфере растений в большем количестве (с большей НКС) будет представлен тот бактериальный штамм, который формирует больший миграционный поток клеток из ниши обитания. Верификация и параметрическая идентификация (миграционная активность штаммов, индекс частотно-зависимого отбора) НКС-модели проводились с использованием опубликованных ранее экспериментальных данных. Анализ вычисленных по этим данным параметров НКС-модели показал, что штаммы ризобий с большей миграционной активностью и малым индексом частотно-зависимого отбора образуют больший миграционный поток клеток из ниш обитания и демонстрируют большую НКС. Генетическая модификация ризобий с целью повышения НКС может вызвать интенсификацию миграционных потоков клеток штамма из ниши обитания и к ускоренному расходованию ресурсов ниши. Интенсивная миграция клеток из почвенной ниши может привести к преждевременному расходованию ресурса ниши и вызвать гибель клеток ризобий раньше, чем они образуют симбиоз с бобовыми растениями. Рассмотренные особенности выживания и миграции ризобий в естественных почвенных условиях необходимо учитывать, особенно, при разработке микробных препаратов длительного действия.
Бесплатно

Tilling - современная технология «обратной» генетики растений (обзор)
Статья обзорная
В генетических исследованиях существует два основных подхода, получивших названия «прямой» и «обратной» генетики. В то время как «прямая» генетика занимается изучением закономерностей наследования признаков (фенотипа) у живых организмов в ряду поколений и выявляет генетические факторы, которые влияют на проявление данных признаков (работает по принципу «от фенотипа к генотипу»), «обратная» генетика, имея в качестве отправной точки ген с неизвестной функцией, выясняет его роль в организме путем изменения структуры или активности такого гена с последующим анализом ассоциированных изменений в фенотипе (принцип «от генотипа к фенотипу»). С развитием технологий широкомасштабного геномного секвенирования «обратная» генетика получила существенную поддержку, заняв лидирующее положение как в фундаментальной науке, так и в прикладных областях. В представленном обзоре изложены принципы, лежащие в основе одного из новейших методов «обратной» генетики, получившего название TILLING (от англ. Targeting Induced Local Lesions in Genomes - поиск индуцированных локальных нарушений в геномах). Метод совмещает классический мутационный анализ с современными способами точного выявления нуклеотидных замен в заданном локусе. Отличительные особенности метода - высокая эффективность и применимость к широкому кругу биологических объектов, благодаря чему он успел завоевать широкое признание в научном мире. Подробно описаны ключевые этапы подготовки к TILLING-анализу: получение мутагенизированной популяции исследуемых организмов и создание на ее основе так называемой TILLING-платформы, включающей организованную коллекцию мутантов и связанную с ней базу данных с информацией о коллекции. Приведены основные подходы к детекции точечных мутаций, применяемые в настоящее время мировыми исследовательскими группами, в том числе новейшие подходы на основе методов NGS (от англ. Next Generation Sequencing - «секвенирование следующего поколения»). Особое внимание уделено требованиям, предъявляемым к исследователям для успешного проведения TILLING-анализа, а также существующим вариациям и модификациям метода, призванным решать различные задачи. Отдельно представлены результаты, полученные коллективом авторов с применением методики TILLING в их исследованиях специфичности распознавания партнеров при установлении мутуалистического симбиоза между горохом посевным ( Pisum sativum L.) и клубеньковой бактерией Rhizobium leguminosarum bv. viciae. Благодаря TILLING-анализу авторам удалось выявить ряд мутантов гороха по гену рецепторной киназы LykX, который представляется наиболее вероятным кандидатом на роль детерминанты повышенной избирательности растения к бактериальному микросимбионту. Исследование полученных мутантов поможет сделать окончательное заключение о роли гена LykX в симбиозе гороха и клубеньковых бактерий.
Бесплатно

Статья обзорная
Термин «секвенирование следующего поколения» (от англ. Next Generation Sequencing, NGS) объединяет современные технологии, позволяющие получать информацию о нуклеотидном составе десятков и сотен миллионов последовательностей в одном эксперименте. Технологии NGS используются для решения широкого круга задач (секвенирование геномов, оценка экспрессии генов, разработка молекулярных маркеров, изучение метагенома микробных сообществ, эпигенетические исследования и пр.). Одно из важнейших применений метода NGS связано с анализом экспрессии генов с помощью секвенирования транскриптома (всех транскрибируемых РНК). В обзоре рассмотрены подходы, применяемые для тотального анализа экспрессии генов при помощи «секвенирования следующего поколения» - RNAseq (РНК-секвенирование) и его модификация MACE (Massive Analysis of cDNA Ends - массовый анализ концов кДНК). В указанной модификации, разработанной компанией «GenXPro GmbH» (Франкфурт-на-Майне, Германия), у каждой молекулы кДНК секвенированию подвергается только фрагмент размером 100-500 п.н., прилежащий к 3´-концу транскрипта (в другом варианте - к 5´-концу транскрипта); таким образом, разрешение метода возрастает в несколько раз. За счет этого при использовании MACE можно детектировать транскрипты с низкой экспрессией, соответствующие ключевым регуляторным генам, составляющим основу биологических процессов. Также в обзоре описан функциональный анализ результатов РНК-секвенирования, в том числе выявление биологических закономерностей на основании обнаружения дифференциально экспрессирующихся генов. Важный этап этой работы - иерархическая кластеризация выявляемых транскриптов в соответствии с принципами генной онтологии. Гены и генные продукты, взаимодействуя друг с другом, образуют структурированную регуляторную сеть, однако выявление и анализ таких регуляторных сетей представляет собой сложную задачу, решение которой требует развития математических методов и накопления данных об экспрессии генов, локализации генных продуктов и их функциональной аннотации. В обзоре приведены примеры изучения транскрипционного профиля тканей и органов гороха посевного ( Pisum sativum L.), в том числе с использованием методики MACE. Таким образом, применение NGS для исследования экспрессии генов на сегодняшний день представляется оптимальным подходом, позволяющим изучать транскрипционные профили любых объектов. Сочетание технологий NGS и возможностей современной компьютерной биологии открывает новые перспективы изучения транскриптомов, в том числе у немодельных видов, что обеспечивает поступательное развитие многих направлений биологической науки.
Бесплатно

Негативная гормональная регуляция развития симбиотических клубеньков. Сообщение I. Этилен (обзор)
Статья обзорная
Процесс формирования симбиотических клубеньков в результате взаимодействия бобовых растений и ризобий контролируется обоими партнерами. Со стороны растения важная роль принадлежит системе гормональной регуляции, в которую вовлечены все классы фитогормонов, выявленные у растений. Негативная регуляция клубенькообразования имеет большое значение, поскольку формирование симбиотического клубенька является для растения весьма энергозатратным процессом. Более того, при взаимодействии с неэффективным штаммом ризобий возможно формирование клубеньков, в которых не происходит фиксация азота, что не выгодно для растения. В настоящее время имеются данные о вовлечении в негативную регуляцию развития клубеньков четырех фитогормонов: этилена, абсцизовой, жасмоновой и салициловой кислот. В обзоре рассмотрена роль этилена в негативной регуляции клубенькообразования. Этилен негативно контролирует количество формируемых симбиотических клубеньков на различных стадиях их развития. Так, первый негативный эффект этилена проявляется уже на уровне кальциевых осцилляций, вызываемых действием Nod-факторов, продуцируемых ризобиями. В дальнейшем этилен негативно влияет на деформации корневых волосков, стимулируемых Nod-факторами, рост инфекционной нити, а также на развитие клубенькового примордия. У тропического бобового Sesbania rostrata Bremek. & Oberm. этилен подавляет активность клубеньковой меристемы, что приводит к формированию детерминированного типа клубенька (с ограниченной активностью меристемы), в то время как в отсутствие этилена формируются недетерминированные клубеньки (с продолжительной активностью меристемы). В то же время выявлено, что у сои Glycine max (L.) Merr. этилен не участвует в регуляции клубенькообразования. По-видимому, роль этилена нельзя однозначно связывать с типом формируемых клубеньков, так как у других бобовых растений, формирующих, как и соя, детерминированные клубеньки, этилен негативно влияет на число образуемых клубеньков. Предполагается, что синтез этилена в инокулированных корнях запускается Nod-факторами, при этом активируются защитные реакции растений, ведущие к ограничению количества формируемых клубеньков. Гиперклубенькообразующий мутант Medicago truncatula Gaertn. sickle, несущий мутацию в гене MtEIN2 - ключевом компоненте пути сигнальной трансдукции этилена, характеризуется, по данным протеомного анализа, сниженным уровнем активации защитных реакций. Примечательно, что не только растения, но и ризобии могут контролировать уровень этилена в ризосфере, влияя тем самым на количество формируемых клубеньков. Одним из таких механизмов служит синтез некоторыми штаммами ризобий ризобитоксина, имеющего структурное сходство с ингибитором синтеза этилена аминоэтоксивинилглицином (АВГ). Другой механизм распространен более широко среди ризобий и связан с синтезом АЦК-дезаминазы, фермента, расщепляющего предшественник синтеза этилена 1-аминоциклопропан-1-карбоновую кислоту (АЦК). Таким образом, очевидно, что регуляция уровня этилена может иметь важное практическое значение, потенциально позволяя увеличить способность растений к клубенькообразованию. Хотя следует заметить, что число формируемых на растении клубеньков является предметом тонкой регуляции со стороны растения, поскольку образование клубенька сопряжено с большими энергетическими затратами. Более того, нельзя забывать, что этилен стимулирует развитие корневых волосков, поэтому снижение его уровня может повлиять на всасывающую способность корня и привести к дефициту питательных элементов.
Бесплатно