Селекция и семеноводство овощных культур в России (к 100-летию федерального научного центра овощеводства). Рубрика в журнале - Сельскохозяйственная биология

Публикации в рубрике (6): Селекция и семеноводство овощных культур в России (к 100-летию федерального научного центра овощеводства)
все рубрики
Крупноплодность у томата Solanum lycopersicum L.: генетические детерминанты, органогенез и развитие плода (обзор)

Крупноплодность у томата Solanum lycopersicum L.: генетические детерминанты, органогенез и развитие плода (обзор)

Балашова И.Т., Сирота С.М., Пинчук Е.В.

Статья обзорная

Крупноплодность у Solanum lycopersicum L. возникла в результате доместикации. Способность растений томата формировать крупный плод вызывает интерес в связи с созданием образцов для многоярусных гидропонных и аэропонных установок, применение которых - основной тренд современного вертикального овощеводства в защищенном грунте. Используя технологию целевой селекции, мы получили первые российские мелкоплодные сорта томата для многоярусной узкостеллажной гидропоники - Наташа и Тимоша. Укрупнение плода связано с генетическими и эпигенетическими механизмами контроля этого признака, которые активно изучаются у томата как модельного объекта (An. Frary с соавт., 2000; B. Cong с соавт., 2006; Z. Huang с соавт., 2011; S. Wang, с соавт., 2011; A.J. Monforte с соавт., 2014; L. Azzi с соавт., 2015). В своем обзоре мы сконцентрировали внимание на данных о генах, участвующих в контроле массы плода у томата, и возможностях регулировать их экспрессию, которые, по нашему мнению, представляют первоочередной интерес для селекции. Цель обзора - обобщение сведений о генетических детерминантах массы плода у томата и их связи с органогенезом, гормональной и метаболической регуляцией развития плода. Анализ научных публикаций, затрагивающих тему укрупнения плода у томата при доместикации, выявил наличие 37 локусов, регулирующих деление и расширение клеток на четырех этапах развития плода от фазы развития яйцеклетки и фазы формирования завязи после оплодотворения до фазы клеточного деления и фазы расширения клеток, формирующих зрелый плод. Часть этих локусов связаны с процессами гормонального развития растения в фазы цветения, оплодотворения, образования плодов и семян и поэтому вовлечены в ауксиновый ( SlPIN4 , SlTIR1 , SlARF7 , SlARF8 , SlIAA9 ) и гиббереллиновый ( SlGA20ox1 , SlDELLA1 ) сигналинги. Другие локусы контролируют расширение клеток в период развития и созревания плода, и поэтому вовлечены в процессы регуляции первичного ( HXK1 , SuSY , LIN5 , TIV1 , mMDH , cpFBP , SPA ) и вторичного ( NOTABILIS / NCED1 , FLACCA , Gal-LDH , GME ) метаболизма. Отдельная группа локусов контролирует клеточный цикл в период развития яйцеклетки ( TAGL1 , FAS , LC , SlWUS , SlIMA ) и увеличения плода ( SlCDKA1 , SlCDCB1 , SlCDKB2 и SlCCS52A , SlWEE1 , SlKRP1 ) (L. Azzi с соавт., 2015). Из локусов, определяющих размер плода у томата, наиболее подробно описан fw2.2 - первый регуляторный локус, который был картирован международной группой исследователей под руководством генетика S.D. Tanksley (An. Frary с соавт., 2000). Этот локус контролирует мелкоплодность и проявляет полудоминироваие по отношению к полурецессивному аллелю крупноплодности FW2.2 . В серии экспериментов с использованием трансгенных линий установлено, что локус fw2.2 содержится внутри космиды cos50, анализ сиквенса которой выявил две открытых рамки считывания. Одна из них содержала единичное рекомбинационное событие, которое ограничивало локус fw2.2 с правого конца, - XO33. Так как местом локализации одной или нескольких генетических мутаций, вызывающих изменение размера плода, может быть только участок слева от XO33, кДНК44 не может вовлекаться в процессы увеличения размера плода, и ген ORFX , или upstream регион, фенотипически проявляется в виде стандартного мелкоплодного образца ( fw2.2 ) . Затем было установлено, что fw2.2 действует как негативный регулятор клеточного деления на самых ранних стадиях развития плода - после опыления. Таким образом, fw2.2 - один из ряда регуляторных локусов количественных признаков (quantitative trait loci, QTL), действующий в процессе увеличения размера плода, таких как achaete-scute , scabrous, Delta у культур, имеющих плоды, teosinte-branched 1 ( tb1 ) у кукурузы и Hox -гены у животных (цит. по B. Cong с соавт., 2006). Локус FW2.2 , вероятно, выступает в роли позитивного регулятора клеточного деления и вовлечен во взаимодействие с цитоплазматическими мембранами при участии регуляторной (b)-субъединицы СКII-киназы, которая, как известно, формирует часть клеточного цикла, связанного с путями сигналинга у клеток дрожжей и животных (B. Cong с соавт., 2006).

Бесплатно

Метаболиты автотрофных и гетеротрофных листьев амаранта Amaranthus tricolor L. сорта Early splendor

Метаболиты автотрофных и гетеротрофных листьев амаранта Amaranthus tricolor L. сорта Early splendor

Гинс М.С., Гинс В.К., Мотылева С.М., Куликов И.М., Медведев С.М., Пивоваров В.Ф.

Статья научная

Важное направление системной биологии (метаболомики) - изучение состава и свойств низкомолекулярных метаболитов сельскохозяйственных растений с разным способом питания. Использование метаболомных технологий расширяет возможности анализа биохимических изменений в составе и структурных модификациях метаболитов, происходящих при переходе с автотрофного способа питания на гетеротрофный. Большинство фотосинтезирующих растений способно питаться автотрофно, однако в их жизни есть периоды появления бесхлорофилльных органов, которые питаются за счет органических веществ, запасенных ранее. Так, среди растений вида Amaranthus tricolor L. встречаются сорта, листья которых различаются по способу питания. Например, на растениях сорта Early Splendor в конце вегетативной фазы наряду с зеленоокрашенными фотосинтезирующими листовыми пластинками образуются ярко окрашенные красные гетеротрофные листья. Сравнительное изучение состава низкомолекулярных метаболитов в этих листьях актуально для понимания взаимосвязи гетерогенного и автотрофного способов питания в целом растении. В настоящей работе при метаболомном анализе водных и спиртовых экстрактов листьев амаранта сорта Early Splendor с использованием метода газовой хромато-масс-спектрометрии впервые установлены существенные качественные различия состава метаболитов в автотрофных и гетеротрофных листьях. В составе низкомолекулярных метаболитов идентифицированы как неспецифические (общие для разных способов питания), так и специфические (характерные для каждого из них в отдельности). Цель работы - сравнительное изучение состава низкомолекулярных метаболитов и выявление новых биологически активных метаболитов-антиоксидантов в гетеротрофных и автотрофных листьях амаранта сорта Early Splendor. Эксперименты проводили в 2017-2019 годах. Объектом исследования были растения амаранта сорта Early Splendor в фазу конец цветения-начало формирования семян. Растения выращивали в пленочной теплице Федерального научного центра овощеводства. Материалом служили свежие красноокрашенные гетеротрофные листья, сформированные на верхушке главного побега, и нижележащие фотосинтезирующие листья растения. Исследовали листья с полностью сформированной листовой пластинкой. Листья измельчали и проводили экстракцию 96 % этанолом или дистиллированной водой при соотношении 1:10 (навеска листьев:экстрагент) и температуре 24 °С в течение 30 мин. Анализ метаболитов выполняли методом газовой хромато-масс-спектро-метрии на хроматографе JMS-Q1050GC («JEOL Ltd», Япония). По библиотечным масс-спект-рам базы NIST-5 National Institute of Standards and Technology (США) идентифицировали 87 метаболитов, из которых в гетеротрофных листьях содержалось 19 веществ в водных экстрактах и 38 - в спиртовых, тогда как в фотосинтезирующих листьях было определено соответственно 21 и 57 веществ. В водных и спиртовых экстрактах обнаружили 29 одинаковых метаболитов. В гетеротрофных и автотрофных листьях амаранта вида сорта Early Splendor впервые был выявлен сквален (C30H50) - биологически активное соединение, которое проявляет антиоксидантные свойства. Также в гетеротрофных листьях идентифицировано соединение монопеларгонин (mono-nonanoin) (C15H11O7), который служит промежуточным продуктом o-гликозилирования флавоноидов, относится к фенольным соединениям и обладает высокой антиоксидантной активностью. Были идентифицированы одинаковые метаболиты, характерные для листьев амаранта с разным типом питания, что позволяет сделать предположение о тесном взаимодействии двух способов питания в период появления, роста и развития гетеротрофных листьев. При этом фотосинтезирующие листья служили донорами ключевых метаболитов для гетеротрофных листьев, тогда как последние были не только акцепторами, но и сами могли синтезировать и модифицировать метаболиты, необходимые для построения клетки. Богатый состав углеводов, незаменимых аминокислот, липидов и органических кислот, идентифицированных в фотосинтезирующих листьях, обусловливает использование воспроизводимой листовой биомассы в качестве источника антиоксидантов и биологически активных веществ. Следует подчеркнуть, что не все метаболиты удалось идентифицировать. Тем не менее выявленный нами набор метаболитов, поступающих из фотосинтезирующих листьев, позволяет предположить, что этих веществ достаточно для построения и функционирования клеток и тканей гетеротрофных листьев.

Бесплатно

Особенности развития вируса обыкновенной мозаики фасоли (Potyvirus, Potyviridae) в условиях Московского региона и исходный материал для селекции на устойчивость

Особенности развития вируса обыкновенной мозаики фасоли (Potyvirus, Potyviridae) в условиях Московского региона и исходный материал для селекции на устойчивость

Енгалычева И.А., Козарь Е.Г., Домблидес А.С., Антошкин А.А., Пивоваров В.Ф., Ушаков А.А., Ушаков В.А.

Статья научная

Вирус обыкновенной мозаики фасоли ( Bean common mosaic virus , BCMV) в последние годы значительно расширяет ареал распространения и становится важным в экономическом отношении возбудителем болезни на фасоли овощной ( Phaseolus vulgaris L.) в Нечерноземной зоне России. Начиная с 2014 года, отмечено возникновение эпифитотий в Московском регионе, однако целенаправленный скрининг отечественных и зарубежных сортов культуры на устойчивость к BCMV здесь не проводился. В представленной работе впервые описаны особенности развития BCMV в условиях Московской области, установлено сочетание климатических факторов, определяющих степень развития болезни, а также дана оценка обширного сортимента сортов фасоли овощной по признаку устойчивости к BCMV с использованием молекулярных маркеров. Целью наших исследований стал поиск источников устойчивости к вирусу обыкновенной мозаики фасоли (BCMV) различного происхождения для включения в селекционный процесс по созданию новых отечественных сортов фасоли спаржевого типа с требуемым сочетанием признаков. Мониторинг развития BCMV на посевах фасоли овощной в агроценозе Московской области проводили в 2014-2019 годах на базе ФГБНУ Федеральный научный центр овощеводства. Материалом служили 207 коллекционных образцов (45-60 растений каждого сорта) различного географического и генетического происхождения. Изолят BCMV был выделен из пораженных растений этой культуры. Биотестирование осуществляли посредством искусственного заражения гороха сорта Жегаловец и фасоли сорта Грибовская 92. В работе использовали методы визуальной и серологической диагностики, биотестирования, фитопатологический мониторинг развития болезни. Полевую оценку устойчивости образцов проводили в динамике по 4-балльной шкале, ранжирование по группам устойчивости - на основе показателя степени развития болезни с учетом стабильности проявления признака в разные годы. ДНК-маркирование основных генов устойчивости (доминантного гена I , рецессивных генов bc-12и bc-3 ) осуществляли с помощью соответствующих маркеров SW13, SBD5 и ROC11 согласно разработанным протоколам. В результате исследований были выявлены биологические особенности московского изолята BCMV, который in vitro поражает виды Phaseolus vulgaris L. и Pisum sativum L. семейства Fabaceae. На характер проявления симптомов и интенсивность поражения растений-индикаторов при биотестировании и образцов фасоли в полевых условиях существенное влияние оказывал температурный фактор, а на степень распространения вируса - количество выпавших осадков. Пониженное количество осадков во все периоды вегетации в сочетании с повышенными температурами в целом служили сдерживающим фактором распространения патогена в климатических условиях Московской области. В то же время это сочетание факторов способствовало более интенсивному проявлению визуальных симптомов поражения вирусом листового аппарата растений, особенно в первый период вегетации. Среди 207 изученных образцов только 6 % проявили стабильно высокую устойчивость к BCMV на фоне эпифитотий. Скрининг 30 образцов с различной устойчивостью показал, что рецессивные гены bc-12 и bc-3 присутствуют у большинства из них, а доминантный ген I - только у половины. Наибольшее число образцов имели генотипы I / bc-12 / bc-3 (33 %) и -/ bc-12 / bc-3 (47 %), из которых стабильно высокую устойчивость к вирусу проявили только 1/3 образцов. При отсутствии генов I и bc-12 было отмечено сильное поражение растений вирусом. Анализ соответствия по критерию χ2 выявил более значимое влияние гена bc-12 на степень полевой устойчивости образцов к BCMV. По совокупности всех полученных результатов в качестве исходного материала для создания сортов фасоли овощной спаржевого типа с высокой устойчивостью к BCMV рекомендованы 17 наиболее перспективных коллекционных образцов различного происхождения, пять сортов (Хавская универсальная, Рант, Золушка, Мариинка, Светлячок) и два перспективных сортообразца (СП-232, КП-84) селекции ФГБНУ ФНЦО с комплексом других хозяйственно ценных признаков.

Бесплатно

Оценка генетического разнообразия образцов капусты кочанной (Brassica oleracea L.) с использованием SSR маркеров

Оценка генетического разнообразия образцов капусты кочанной (Brassica oleracea L.) с использованием SSR маркеров

Домблидес А.С., Бондарева Л.Л., Пивоваров В.Ф.

Статья научная

Из всех разновидностей капусты в Российской Федерации наиболее распространены традиционные сорта и гибриды капусты кочанной Brassica oleracea L . сonvar. capitata (L.). Классификация селекционного материала с использованием ДНК маркеров позволяет выделить ценные генотипы и установить между ними генетические взаимосвязи для последующей селекции на генетически отличимые формы. Микросателлитные маркеры (simple sequence repeats, SSR) широко используют для генетической идентификации и генотипирования сельскохозяйственных культур. Работы на B. oleracea L. показали их высокую эффективность по выявлению полиморфизма между разновидностями, сортами и внутри сортов. В настоящем исследовании мы впервые установили генетические взаимосвязи между селекционными образцами капусты кочанной отечественной селекции на основе полиморфизма микросателлитных локусов. При сравнении трех разновидностей обнаружена тесная генетическая близость между генотипами савойской и белокочанной капусты. Целью работы было выявление генетических взаимоотношений между селекционными образцами Brassica oleracea L. сonvar. capitata (L.) Alef. var. capitata L. f. alba , var. capitata L. f. rubra и var. sabauda L. на основе типирования и генетической классификации с помощью SSR маркеров, а также сопоставление данных ДНК-анализа с принадлежностью изученных генотипов к соответствующими сортотипам и группами спелости. Объектом исследования были 24 селекционных образца капусты кочанной из коллекции Федерального научного центра овощеводства (ФГБНУ ФНЦО), включая краснокочанную и савойскую разновидности, выведенные в ФГБНУ ФНЦО. Геномную ДНК выделяли из молодых листьев растений в фазу 2-3-го листа с использованием набора реагентов Сорб-ГМО-Б (ООО «Синтол», Россия). Для оценки чистоты и концентрации выделенной ДНК использовали спектрофотометр SmartSpec Plus («Bio-Rad», США). Для осуществления SSR-анализа отобрали 21 микросателлитный локус с известными последовательностями праймеров. Амплификацию осуществляли на приборе С1000 Touch («Bio-Rad», США). ПЦР-продукты разделяли методом вертикального электрофореза с использованием системы Sequi-Gen GT («Bio-Rad», США) в 6 % полиакриламидном секвенирующем геле. Размеры амплифицированных фрагментов определяли в сравнении с маркером молекулярных масс GeneRuler100 bp plus DNA ladder («Thermo Fisher Scientific», США). Полученные цифровые фотографии электрофореграмм анализировали в программе Image Lab 3.0 («Bio-Rad», США). Структуру популяции изучали в программе STRUCTURE 2.3.4 (https://web.stanford.edu/group/pritchardlab/home.html). Расчет генетических расстояний проводили в программе GenAlEx 6.5 для Microsoft Excel по методу M. Nei. Для построения UPGMA дендрограммы использовали алгоритм программы MEGA5.2. В результате анализа получили 103 аллеля со средним показателем 4,9 на локус. Размеры продуктов амплификации составляли 130-410 п.н. Величина информационного полиморфизма (PIC) для праймеров варьировала от 0,3 до 0,9. Анализ популяции выявил, что все образцы распределились по шести основным кластерам. Генетические дистанции варьировали от 0,060 до 0,186. Дендрограмма UPGMA, построенная на основе генетических дистанций, отражала происхождение исследуемых селекционных образцов. Так, сорта Белорусская 455, Подарок 2500, Амагер 611 и Зимовка 1474 с происхождением из Северо-Западной Европы, были объединены в общий кластер, где также находился гибрид Северянка F1, созданный с использованием этих сортов. Сорта, принадлежащие к сортотипу Дитмарская ранняя, - Июньская 3200, Стахановка 1513, Номер первый грибовский 147 образовали отдельный кластер, куда также входил раннеспелый гибрид Аврора F1, имеющий в своей родословной сорт Июньская 3200. Две селекционные линии, выделенные из гибрида Аврора F1, были генетически отдалены и располагались в другом подкластере. Сорта Слава 1305 и Слава грибовская 231, относящиеся к отдельному сортотипу Слава, располагались на отдельной ветви дендрограммы. Относительно недавно полученные сорт Парус и два гибрида Зарница F1 и Мечта F1 генетически отличались от остальных образцов. Московская поздняя 15, стародавний сорт местного происхождения, также образовал отдельную ветвь дендрограммы. Три сорта капусты савойской сгруппировались вместе, причем новый раннеспелый сорт Московская кружевница был генетически отдален от двух других. Образцы капусты краснокочанной образовывали свою группу с достаточным генетическим отдалением между образцами. Полученные результаты на основе изменчивости SSR локусов совпадали с данными о происхождении образцов капусты кочанной, подтверждая их принадлежность к определенным сортотипам и группам спелости, что позволит использовать этот селекционный материал в дальнейшем для получения новых форм.

Бесплатно

Рост зародыша и прорастание гетероморфных семян Anethum graveolens L. (Apiaceae) под действием высокой температуры

Рост зародыша и прорастание гетероморфных семян Anethum graveolens L. (Apiaceae) под действием высокой температуры

Солдатенко А.В., Бухаров А.Ф., Балеев Д.Н., Иванова М.И., Назаров П.А., Разин О.А., Разин А.Ф.

Статья научная

Гетероморфизм широко распространен в природе и проявляется в варьировании различных параметров семян у отдельных особей и в пределах популяции. Для семян укропа ( Anethum graveolens L.) характерен гетероморфизм, обусловленный материнским фактором. Он влияет прежде всего на величину семян, при этом может наблюдаться варьирование размеров зародыша. Высокая температура - неблагоприятный абиотический фактор, воздействию которой могут подвергаться растения на разных стадиях развития. В настоящей работе в процессе проращивания интактных семян укропа впервые выявлена значительная термочувствительность зародышей из семян, сформированных в соцветиях второго порядка ветвления, к длительному действию супероптимальной температуры. При воздействии высокой температуры происходило угнетение роста зародышей и, как следствие, прорастания интактных семян укропа, полученных из соцветий второго порядка. Нашей целью было изучить влияние матрикального фактора, а также высокой температуры на рост зародыша и прорастание интактных семян укропа, сформированных в соцветиях разных порядков ветвления. Опыты проводили в 2015-2016 годах во Всероссийском НИИ овощеводства - филиал ФГБНУ Федеральный научный центр овощеводства. Объектом исследований служили семена укропа позднеспелого сорта Кентавр, сформированные в соцветиях первого (1п) и второго (2п) порядков ветвления. Семена получали с растений укропа, выращенных в открытом грунте. Уборку проводили на 50-е сут после цветения зонтиков первого порядка. Эксперименты проводили в термостате с контролируемой температурой. Чтобы определить критическую температуру для роста зародыша при проращивании и прорастании интактных семян, воздействовали широким диапазоном высоких температур: 20 °С (контроль) - среднеоптимальная температура для семян, не находящихся в состоянии покоя; 25, 30, 35 и 40 °C. Используя морфометрический метод анализа, изучили рост зародыша и динамику прорастания интактных семян. На основании полученных данных строили кривые роста зародыша и прорастания интактных семян. Логистическую регрессию использовали для расчета максимальной сверхоптимальной температуры, при которой возможен рост зародыша и прорастание семян. Показано, что зародыши, сформированные в семенах из зонтиков разных порядков ветвления, находились на разных стадиях развития. Начальные размеры зародышей 1п были на 30 % больше, чем зародышей 2п (р function show_abstract() { $('#abstract1').hide(); $('#abstract2').show(); $('#abstract_expand').hide(); }

Бесплатно

Федеральный научный центр овощеводства: вековая история как фундамент развития (обзор)

Федеральный научный центр овощеводства: вековая история как фундамент развития (обзор)

Пивоваров В.Ф., Солдатенко А.В., Пышная О.Н., Гуркина Л.К.

Статья обзорная

Был создан Всероссийский НИИ селекции и семеноводства овощных культур, впоследствии реорганизованный в Федеральный научный центр овощеводства (ФГБНУ ФНЦО). Деятельность центра берет начало с 1920 года, когда под руководством профессора С.И. Жегалова на Грибовской опытной станции была заложена теоретическая и практическая база для развития отечественной селекции. В последующие годы значительное внимание ученых было уделено разработке и совершенствованию методов селекции, повышающих эффективность отбора, а также ускорению селекционного процесса по созданию адресных сортов и гибридов. Применительно к основным овощным культурам разработаны методы межвидовой гибридизации (Н.И. Тимин с соавт., 2013; А.Ф. Агафонов с соавт., 2018), молекулярного маркирования (Т.П. Супрунова с соавт., 2011; Е.А. Домблидес с соавт., 2015), клонального микроразмножения и получения удвоенных гаплоидов, успешно использованные в селекции (М.С. Бунин с соавт., 2004). Предложены базовые протоколы культуры микроспор in vitro для большинства капустных культур (Е.А. Домблидес с соавт., 2016), культуры неопыленных семяпочек - для тыквенных культур (Н.А. Шмыкова с соавт., 2015). Разработана технология получения удвоенных гаплоидов моркови столовой в культурах пыльников, неопыленных семяпочек и микроспор in vitro (Т.С. Вюртц с соавт., 2016). Доказана экономическая выгода использования современных биотехнологических методов in vitro при создании гибридов: сроки создания гибридов сокращаются с 12 до 6 лет, финансовые затраты снижаются в 2 раза (A. Mineikina с соавт., 2019; T. Vurtz с соавт., 2019). Показано ухудшение фитопатологической обстановки и расширение ареалов новых вредоносных возбудителей на овощных культурах. На основе иммунологической, молекулярно-генетической, морфофизиологической оценки селекционного материала овощных культур в условиях искусственного заражения, провокационного и естественного инфекционных фонов выделены источники резистентности к экономически значимым болезням: капусты - к киле, свеклы столовой - к церкоспорозу, фасоли овощной - к вирусным болезням, лука - к пероноспорозу (И.А. Енгалычева с соавт., 2019). При создании сортов с высоким содержанием биологически активных веществ и антиоксидантов широко применяются физиологические и биохимические методы. С использованием созданных сортов овощебахчевых культур разработаны технологии получения функциональных продуктов питания, включая новые виды чая лечебно-профилактического действия, безалкогольные напитки, пищевые красители, и кондитерские изделия (М.С. Гинс с соавт., 2017). Предложены рецептуры безглютеновых хлебобулочных изделий с применением интродуцированных культур якона, амаранта и дайкона. Разработаны технологии обогащения селеном овощных культур для употребления в свежем виде и в качестве сырья для функциональных продуктов (Н.А. Голубкина с соавт., 2018). ФНЦО осуществляет координацию научных исследований по селекции, производству и переработке овощных и бахчевых культур в России в рамках государственных программ по развитию отрасли и обеспечению продовольственной безопасности.

Бесплатно

Журнал