An impedance effect of a thin adhesive layer in some boundary value and transmission problems governed by elliptic differential equations
Автор: Favini A., Labbas R., Lemrabet K.
Рубрика: Математическое моделирование
Статья в выпуске: 4 т.8, 2015 года.
Бесплатный доступ
In this paper we consider a problem of two bodies bonded through a thin adhesive layer (a third material) of thickness δ. Leting δ go to zero, one obtains a boundary value transmission problem set on a fixed domain. We then give new results for the study of this problem in the framework of Hölder spaces: an explicit representation of the solution and necessary and sufficient conditions at the interface for its optimal regularity are obtained using the semigroups theory and the real interpolation spaces.
Boundary value problem of elliptic type, transmission problems, impedance effect, thin layer
Короткий адрес: https://sciup.org/147159345
IDR: 147159345 | DOI: 10.14529/mmp150405
Список литературы An impedance effect of a thin adhesive layer in some boundary value and transmission problems governed by elliptic differential equations
- Grisvard P. Spazi di Tracce e Applicazioni. Rendiconti di Matematica, série VI, 1972, vol. 5, no. 4, pp. 657-729.
- Krasucki F., Lenci S. Analysis of Interfaces of Variable Stiffness, International Journal of Solids and Structures, 2000, vol. 37, pp. 3619-3632. DOI: DOI: 10.1016/S0020-7683(99)00072-4
- Krasucki F., Lenci S. Yield Design of Bonded Joints. European Journal of Mechanics -A/Solids, 2000, vol. 19, issue 4, pp. 649-667. DOI: DOI: 10.1016/S0997-7538(00)00173-X
- Geymonat G., Krasucki F., Lenci S. Mathematical Analysis of a Bonded Joint with a Soft Thin Adhesive. Math. Mech. Solids, 1999, vol. 4, no. 2, pp. 201-225. DOI: DOI: 10.1177/108128659900400204
- Belhamiti O., Labbas R., Lemrabet K., Medeghri A. Transmission Problems in a Thin Layer Set in the Framework of the Hölder Spaces, Resolution and Impedance. Journal of Mathematical Analysis and Applications, 2009, vol. 358, pp. 457-484. DOI: DOI: 10.1016/j.jmaa.2009.05.010
- Dore A., Favini A., Labbas R., Lemrabet K. An Abstract Transmission Problem in a Thin Layer, I: Sharp Estimates. Journal of Functional Analysis, 2011, vol. 261, pp. 1865-1922. DOI: DOI: 10.1016/j.jfa.2011.05.021
- Sinestrari E. On the Abstract Cauchy Problem of Parabolic Type in Space of Continuous Functions. J. Math. Anal. App., 1985, vol. 66, pp. 16-66. DOI: DOI: 10.1016/0022-247X(85)90353-1
- Dore G., Venni A. H Functional Calculus for Sectorial and Bisectorial Operators. Studia Math., 2005, vol. 166, pp. 221-241. DOI: DOI: 10.4064/sm166-3-2
- Haase M. The Functional Calculus for Sectorial Operators and Similarity Methods. Thesis, Universität Ulm, Germany, 2003.
- Lunardi A. Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, 1995.
- Cartan H. Théorie Elémentaire des Fonctions Analytiques d'une ou Plusieurs Variables Complexes. Paris, Hermann, 1961.
- Campanato S. Generation of Analytic Semigroups by Elliptic Operators of Second Order in Hölder Spaces. Annal. Sc. Norm. Super. Pisa Cl. Sci, 1981, vol. 4, no. 8 (3), pp. 495-512.
- Da Prato G., Grisvard P. Sommes d'opérateurs linéaires et équations différentielles opérationnelles. J. Math. Pures Appl., IX Ser. 54, 1975, no. 3, pp. 305-387.
- Labbas R. Problèmes aux limites pour une équation différentielle abstraite de type elliptique. Thèse d'état, Université de Nice, 1987.
- Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York, Applied Mathematical Sciences, Springer-Verlag, 1983. DOI: DOI: 10.1007/978-1-4612-5561-1
- Tanabe H. Equations of Evolution. Monographs and Studies in Mathematics 6. London, San Francisco, Melbourne, Pitman, 1979.