Ангиотензин 1-7 - пептид, повышающий резистентность сердца к ишемии и реперфузии: нарративный обзор
Автор: Мухомедзянов А. В., Попов С. В., Маслов Л. Н., Нарыжная Н. В., Сиротина М. А., Курбатов Б. К., Горбунов А. С., Килин М., Кан А., Крылатов А. В., Подоксенов Ю. К., Степанов И. В.
Журнал: Сибирский журнал клинической и экспериментальной медицины @cardiotomsk
Рубрика: Обзоры и лекции
Статья в выпуске: 3 т.39, 2024 года.
Бесплатный доступ
Обоснование. Высокая смертность среди пациентов с острым инфарктом миокарда (ОИМ) является важной проблемой современной кардиологии. В последние годы не произошло существенного снижения уровня смертности от ОИМ. Лекарственные препараты, применяемые для лечения ОИМ, недостаточно эффективны, поэтому назрела необходимость в разработке принципиально новых лекарственных препаратов, способных существенно увеличить толерантность сердца к ишемии/реперфузии (И/Р). Прототипом подобных лекарственных препаратов мог бы стать пептид ангиотензин 1-7, который способен повышать толерантность сердца к И/Р за счет активации Mas-рецепторов в ткани миокарда. В формировании кардиопротекторного эффекта ангиотензина 1-7 принимают участие следующие ферменты: NO-синтаза, растворимая гуанилилциклаза, PI3-киназа, ERK1/2 киназа, Akt-киназа и, возможно, протеинкиназа G. Косвенные данные указывают на то, что гипотетическим конечным эффектором в кардиопротекторном действии ангиотензина 1-7 могут быть митохондриальные или сарколеммальные АТФ-чувствительные К+-каналы.Целью данной статьи является подготовка обзора информации о роли ангиотензина 1-7 в повышении резистентности сердца к ишемии и реперфузии. Поиск литературы по данному вопросу осуществлялся в базе данных PubMed с использованием запросов “angiotensin 1-7 receptors”, “stress”, “angiotensin 1-7”, “mas receptor”, “cardioprotective effects of angiotensin 1-7”.
Сердце, ишемия, реперфузия, острый инфаркт миокарда, ангиотензин 1-7, киназы, no-синтаза
Короткий адрес: https://sciup.org/149146297
IDR: 149146297 | DOI: 10.29001/2073-8552-2024-39-3-26-33
Список литературы Ангиотензин 1-7 - пептид, повышающий резистентность сердца к ишемии и реперфузии: нарративный обзор
- Меерсон Ф.З. Стресс-лимитирующие системы и проблема профилактики аритмии. Кардиология. 1987;27(7):5–12. Meerson F.Z. Stress-limiting systems and the problem of protection against arrhythmias. Kardiologiia. 1987;27(7):5–12. (In Russ.).
- Nakano Y., Matoba T., Tokutome M., Funamoto D., Katsuki S., Ikeda G. et al. Nanoparticle-mediated delivery of irbesartan induces cardioprotection from myocardial ischemia-reperfusion injury by antagonizing monocyte-mediated inflammation. Sci. Rep. 2016;6:29601. DOI: 10.1038/srep29601.
- Jugdutt B.I., Jelani A., Palaniyappan A., Idikio H., Uweira R.E., Menon V. et al. Aging-related early changes in markers of ventricular and matrix remodeling after reperfused ST-segment elevation myocardial infarction in the canine model: effect of early therapy with an angiotensin II type 1 receptor blocker. Circulation. 2010;122(4):341–351. DOI: 10.1161/CIRCULATIONAHA.110.948190.
- Andrä M., Russ M., Jauk S., Lamacie M., Lang I., Arnold R. et al. Antioxidant solution in combination with angiotensin-(1-7) provides myocardial protection in langendorff-perfused rat hearts. Oxid. Med. Cell. Longev. 2020;2020:2862631. DOI: 10.1155/2020/2862631.
- Zhou G., Fan L., Li Z., Li J., Kou X., Xiao M et al. G protein-coupled receptor MAS1 induces an inhibitory effect on myocardial infarction-induced myocardial injury. Int. J. Biol. Macromol. 2022;207:72–80. DOI: 10.1016/j.ijbiomac.2022.02.163.
- Sykora M., Kratky V., Kopkan L., Tribulova N., Szeiffova Bacova B. Anti- fibrotic potential of angiotensin (1-7) in hemodynamically overloaded rat heart. Int. J. Mol. Sci. 2023;24(4):3490. DOI: 10.3390/ijms24043490.
- Young D., Waitches G., Birchmeier C., Fasano O., Wigler M. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell. 1986;45(5):711–719. DOI: 10.1016/0092-8674(86)90785-3.
- Young D., O’Neill K., Jessell T., Wigler M. Characterization of the rat mas oncogene and its high-level expression in the hippocampus and cerebral cortex of rat brain. Proc. Natl. Acad. Sci. USA. 1988;85(14):5339–5342. DOI: 10.1073/pnas.85.14.5339.
- Metzger R., Bader M., Ludwig T., Berberich C., Bunnemann B., Ganten D. Expression of the mouse and rat mas proto-oncogene in the brain and peripheral tissues. FEBS Lett. 1995;357(1):27–32. DOI: 10.1016/0014-5793(94)01292-9.
- Soltan F., Esmaili Dahej M., Yadegari M., Moradi A., Hafizi Barjin Z., Safari F. Resveratrol confers protection against ischemia/reperfusion injury by increase of angiotensin (1-7) expression in a rat model of myocardial hypertrophy. J. Cardiovasc. Pharmacol. 2021;78(1):e55–e64. DOI: 10.1097/FJC.0000000000001035.
- Kostenis E., Milligan G., Christopoulos A., Sanchez-Ferrer C.F., Heringer-Walther S., Sexton P.M. et al. G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation. 2005;111(14):1806–1813. DOI: 10.1161/01.CIR.0000160867.23556.7D.
- Dias-Peixoto M.F., Ferreira A.J., Almeida P.W., Braga V.B., Coutinho D.C., Melo D.S. et al. The cardiac expression of Mas receptor is responsive to different physiological and pathological stimuli. Peptides. 2012;35(2):196–201. DOI: 10.1016/j.peptides.2012.03.022.
- Zhao W., Zhao T., Chen Y., Sun Y. Angiotensin 1-7 promotes cardiac angiogenesis following infarction. Curr. Vasc. Pharmacol. 2015;13(1):37–42. DOI: 10.2174/15701611113119990006.
- Xu H., An X., Tian J., Fu M., Wang Q., Li C. et al. Angiotensin-(1-7) protects against sepsis-associated left ventricular dysfunction induced by lipopolysaccharide. Peptides. 2021;144:170612. DOI: 10.1016/j.peptides.2021.170612.
- Tonnaer J.A., Engels G.M., Wiegant V.M., Burbach J.P., De Jong W., De Wied D. Proteolytic conversion of angiotensins in rat brain tissue. Eur. J. Biochem. 1983;131(2):415–421. DOI: 10.1111/j.1432-1033.1983.tb07279.x.
- Yu B., Chen H., Guo X.Q., Hua H., Guan Y., Cui F. et al. CIHH protects the heart against left ventricular remodelling and myocardial fibrosis by balancing the renin-angiotensin system in SHR. Life Sci. 2021;278:119540. DOI: 10.1016/j.lfs.2021.119540.
- de Miranda D.C., de Oliveira Faria G., Hermidorff M.M., Dos Santos Silva F.C., de Assis L.V.M., Isoldi M.C. Pre- and post-conditioning of the heart: an overview of cardioprotective signaling pathways. Curr. Vasc. Pharmacol. 2021;19(5):499–524. DOI: 10.2174/1570161119666201120160619.
- Maslov L.N., Khaliulin I., Oeltgen P.R., Naryzhnaya N.V., Pei J.M., Brown S.A. et al. Prospects for creation of cardioprotective and antiarrhythmic drugs based on opioid receptor agonists. Med. Res. Rev. 2016a;36(5):871–923. DOI: 10.1002/med.21395.
- Maslov L.N., Khaliulin I., Zhang Y., Krylatov A.V., Naryzhnaya N.V., Mechoulam R. et al. Prospects for creation of cardioprotective drugs based on cannabinoid receptor agonists. J. Cardiovasc. Pharmacol. Ther. 2016;21(3):262–272. DOI: 10.1177/1074248415612593.
- Canals M., Jenkins L., Kellett E., Milligan G. Up-regulation of the angiotensin II type 1 receptor by the MAS proto-oncogene is due to constitutive activation of Gq/G11 by MAS. J. Biol. Chem. 2006;281(24):16757–16767. DOI: 10.1074/jbc.M601121200.
- Sampaio W.O., Souza dos Santos R.A., Faria-Silva R., da Mata Machado L.T., Schiffrin E.L., Touyz R.M. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension. 2007;49(1):185–192. DOI: 10.1161/01.HYP.0000251865.35728.2f.
- Lara L.D.S., Cavalcante F., Axelband F., De Souza A.M., Lopes A.G., Caruso-Neves C. Involvement of the Gi/o/cGMP/PKG pathway in the AT2-mediated inhibition of outer cortex proximal tubule Na+-ATPase by Ang-(1-7). Biochem. J. 2006;395(1):183–190. DOI: 10.1042/BJ20051455.
- Teixeira L.B., Parreiras-E-Silva L.T., Bruder-Nascimento T., Duarte D.A., Simões S.C., Costa R.M. et al. Ang-(1-7) is an endogenous β-arrestin-biased agonist of the AT1 receptor with protective action in cardiac hypertrophy. Sci. Rep. 2017;7(1):11903. DOI: 10.1038/s41598-017-12074-3.
- Galandrin S., Denis C., Boularan C., Marie J., M’Kadmi C., Pilette C. et al. Cardioprotective angiotensin-(1-7) peptide acts as a natural- biased ligand at the angiotensin II type 1 receptor. Hypertension. 2016;68(6):1365–1374. DOI: 10.1161/HYPERTENSIONAHA.116.08118.
- Oudot A., Vergely C., Ecarnot-Laubriet A., Rochette L. Pharmacological concentration of angiotensin-(1-7) activates NADPH oxidase after ischemia- reperfusion in rat heart through AT1 receptor stimulation. Regul. Pept. 2005;127(1–3):101–110. DOI: 10.1016/j.regpep.2004.10.013.
- Gaidarov I., Adams J., Frazer J., Anthony T., Chen X., Gatlin J. et al. Angiotensin (1-7) does not interact directly with MAS1, but can potently antagonize signaling from the AT1 receptor. Cell. Signal. 2018;50:9–24. DOI: 10.1016/j.cellsig.2018.06.007.
- Ferreira A.J., Santos R.A., Almeida A.P. Angiotensin-(1-7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension. 2001;38(3 Pt.2):665–668. DOI: 10.1161/01.hyp.38.3.665.
- Savergnini S.Q., Beiman M., Lautner R.Q., de Paula-Carvalho V., Allahdadi K., Pessoa D.C. et al. Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the MAS receptor. Hypertension. 2010;56(1):112–120. DOI: 10.1161/HYPERTENSIONAHA.110.152942.
- Ferreira A.J., Santos R.A., Almeida A.P. Angiotensin-(1-7) improves the post-ischemic function in isolated perfused rat hearts. Braz. J. Med. Biol. Res. 2002;35(9):1083–1090. DOI: 10.1590/s0100-879x2002000900009.
- Castro C.H., Santos R.A., Ferreira A.J., Bader M., Alenina N., Almeida A.P. Effects of genetic deletion of angiotensin-(1-7) receptor Mas on cardiac function during ischemia/reperfusion in the isolated perfused mouse heart. Life Sci. 2006;80(3):264–268. DOI: 10.1016/j.lfs.2006.09.007.
- Liao X.X., Guo R.X., Ma H., Wang L.C., Chen Z.H., Yang C.T. et al. Effects of angiotensin-(1-7) on oxidative stress and functional changes of isolated rat hearts induced by ischemia-reperfusion. Nan Fang Yi Ke Da Xue Xue Bao. 2008;28(8):1345–1348. [In Chinese].
- Al-Maghrebi M., Benter I.F., Diz D.I. Endogenous angiotensin-(1-7) reduces cardiac ischemia-induced dysfunction in diabetic hypertensive rats. Pharmacol. Res. 2009;59(4):263–268. DOI: 10.1016/j.phrs.2008.12.008.
- Marques F.D., Ferreira A.J., Sinisterra R.D., Jacoby B.A., Sousa F.B., Caliari M.V. et al. An oral formulation of angiotensin-(1-7) produces cardioprotective effects in infarcted and isoproterenol-treated rats. Hypertension. 2011;57(3):477–483. DOI: 10.1161/HYPERTENSIONAHA.110.167346.
- Maslov L.N., Popov S.V., Mukhomedzyanov A.V., Naryzhnaya N.V., Voronkov N.S., Ryabov V.V. et al. Reperfusion cardiac injury: Receptors and the signaling mechanisms. Curr. Cardiol. Rev. 2022;18(5):63–79. DOI: 10.2174/1573403X18666220413121730.
- Liao X., Wang L., Yang C., He J., Wang X., Guo R. et al. Cyclooxygenase mediates cardioprotection of angiotensin-(1-7) against ischemia/ reperfusion-induced injury through the inhibition of oxidative stress. Mol. Med. Rep. 2011;4(6):1145–1150. DOI: 10.3892/mmr.2011.570.
- Wang L., Luo D., Liao X., He J., Liu C., Yang C. et al. Ang-(1-7) offers cytoprotection against ischemia-reperfusion injury by restoring intracellular calcium homeostasis. J. Cardiovasc. Pharmacol. 2014;63(3):259–264. DOI: 10.1097/FJC.0000000000000043.
- Zhao P., Li F., Gao W., Wang J., Fu L., Chen Y. et al. Angiotensin1-7 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress by preventing ROS-associated mitochondrial dysfunction and activating the Akt signaling pathway. Acta Histochem. 2015;117(8):803–810. DOI: 10.1016/j.acthis.2015.07.004.
- Abwainy A., Babiker F., Akhtar S., Benter I.F. Endogenous angiotensin-(1-7)/Mas receptor/NO pathway mediates the cardioprotective effects of pacing postconditioning. Am. J. Physiol. Heart Circ. Physiol. 2016;310(1):H104–H112. DOI: 10.1152/ajpheart.00121.2015.
- Akhtar S., Babiker F., Akhtar U.A., Benter I.F. mitigating cardiotoxicity of dendrimers: angiotensin-(1-7) via its mas receptor ameliorates PAMAM-induced cardiac dysfunction in the isolated mammalian heart. Pharmaceutics. 2022;14(12):2673. DOI: 10.3390/pharmaceutics14122673.
- Brosnihan K.B., Li P., Ferrario C.M. Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension. 1996;27(3 Pt.2):523–528. DOI: 10.1161/01.hyp.27.3.523.
- Heitsch H., Brovkovych S., Malinski T., Wiemer G. Angiotensin-(1-7)-stimulated nitric oxide and superoxide release from endothelial cells. Hypertension. 2001;37(1):72–76. DOI: 10.1161/01.hyp.37.1.72.
- Dias-Peixoto M.F., Santos R.A., Gomes E.R., Alves M.N., Almeida P.W., Greco L. et al. Molecular mechanisms involved in the angiotensin-(1-7)/Mas signaling pathway in cardiomyocytes. Hypertension. 2008;52(3):542–548. DOI: 10.1161/HYPERTENSIONAHA.108.114280.
- de Almeida P.W., de Freitas Lima R., de Morais Gomes E.R., Rocha-Resende C., Roman-Campos D., Gondim A.N. et al. Functional cross-talk between aldosterone and angiotensin-(1-7) in ventricular myocytes. Hypertension. 2013;61(2):425–430. DOI: 10.1161/HYPERTENSIONAHA.111.199539.
- Gomes E.R., Lara A.A., Almeida P.W., Guimarães D., Resende R.R., Campagnole-Santos M.J. et al. Angiotensin-(1-7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3’,5’-cyclic monophosphate-dependent pathway. Hypertension. 2010;55(1):153–60. DOI: 10.1161/HYPERTENSIONAHA.109.143255.
- Zhu L., Liu Z., Huang L.P., Zhou H.R., Cao Y., Yang X.P. et al. Angiotensin (1-7) alleviates postresuscitation myocardial dysfunction by suppressing oxidative stress through the phosphoinositide 3-kinase, protein kinase B, and endothelial nitric oxide synthase signaling pathway. J. Cardiovasc. Pharmacol. 2021;78(1):e65–e76. DOI: 10.1097/FJC.0000000000001037.
- Giani J.F., Gironacci M.M., Muñoz M.C., Peña C., Turyn D., Dominici F.P. Angiotensin-(1 7) stimulates the phosphorylation of JAK2, IRS-1 and Akt in rat heart in vivo: role of the AT1 and Mas receptors. Am. J. Physiol. Heart Circ. Physiol. 2007;293(2):H1154–H1163. DOI: 10.1152/ajpheart.01395.2006.
- Giani J.F., Gironacci M.M., Muñoz M.C., Turyn D., Dominici F.P. Angiotensin-(1-7) has a dual role on growth-promoting signaling pathways in rat heart in vivo by stimulating STAT3 and STAT5a/b phosphorylation and inhibiting angiotensin II-stimulated ERK1/2 and Rho kinase activity. Exp. Physiol. 2008;93(5):570–578. DOI: 10.1113/expphysiol.2007.014269.
- Zhao J., Liu E., Li G., Qi L., Li J., Yang W. Effects of the angiotensin-(1-7)/Mas/PI3K/Akt/nitric oxide axis and the possible role of atrial natriuretic peptide in an acute atrial tachycardia canine model. J. Renin Angiotensin Aldosterone Syst. 2015;16(4):1069–1077. DOI: 10.1177/1470320314543723.
- Lei Y., Xu Q., Zeng B., Zhang W., Zhen Y., Zhai Y. et al. Angiotensin-(1-7) protects cardiomyocytes against high glucose-induced injuries through inhibiting reactive oxygen species-activated leptin-p38 mitogen-activated protein kinase/extracellular signal-regulated protein kinase ½ pathways, but not the leptin-c-Jun N-terminal kinase pathway in vitro. J. Diabetes Investig. 2017;8(4):434–445. DOI: 10.1111/jdi.12603.
- Cerniello F.M., Carretero O.A., Longo Carbajosa N.A., Cerrato B.D., Santos R.A., Grecco H.E. et al. MAS1 receptor trafficking Involves ERK1/2 activation through a β-Arrestin2-dependent pathway. Hypertension. 2017;70(5):982–989. DOI: 10.1161/HYPERTENSIONAHA.117.09789.
- Lu Y.Y., Wu W.S., Lin Y.K., Cheng C.C., Chen Y.C., Chen S.A. et al. Angiotensin 1-7 modulates electrophysiological characteristics and calcium homoeostasis in pulmonary veins cardiomyocytes via MAS/PI3K/eNOS signalling pathway. Eur. J. Clin. Invest. 2018;48(1):e12854. DOI: 10.1111/eci.12854.
- Yang Y.Y., Sun X.T., Li Z.X., Chen W.Y., Wang X., Liang M.L. et al. Protective effect of angiotensin-(1-7) against hyperglycaemia-induced injury in H9c2 cardiomyoblast cells via the PI3K̸Akt signaling pathway. Int. J. Mol. Med. 2018;41(3):1283–1292. DOI: 10.3892/ijmm.2017.3322.
- Costa A., Galdino G., Romero T., Silva G., Cortes S., Santos R. et al. Ang- (1-7) activates the NO/cGMP and ATP-sensitive K+ channels pathway to induce peripheral antinociception in rats. Nitric. Oxide. 2014;37:11–16. DOI: 10.1016/j.niox.2013.12.007.