Application Mellin transforms to the Black - Scholes equations

Бесплатный доступ

In this paper we will consider the Mellin transform derived on Black - Scholes formulae in year 2003 by Panini, Srivastav and Jodar [6; 7]. The authors use Mellin transforms to derive at first an equation for the price of a European put on a single underlying stock. This case will be extended to the Amercan put option. It is assumed, there are no dividends. Nowadays derivative markets become extremely popular, this popularity even exceeds that of the stock exchange [4; 5; 10]. Option price estimation as the most interesting of the derivatives has many approaches and is multifaceted [2; 3; 8]. Authors would like to thank Professor E.I. Vasilev for the target setting and useful discussions.

Еще

Короткий адрес: https://sciup.org/14968632

IDR: 14968632

Список литературы Application Mellin transforms to the Black - Scholes equations

  • Black, F. The Pricing of Options and Corporate Liabilties/F. Black, M. Scholes//Journal of Political Economy. -1973. -81. -P. 637-654.
  • Clewlow, L. Implementing Derivatives Models/L. Clewlow, C. Strickland. -Chichester: John Wiley and Sons, 1998. -330 p.
  • Cox, J. C. Option pricing: A simplified approach/J. C. Cox, S. A. Ross, M. Rubinstein//Journal of Financial Economics. -1979. -V. 7. -P. 229-263.
  • Hull, J. Introduction to futures and options markets/J. Hull. -New Jersey: Prentice-Hall, Inc., 1998. -400 p.
  • Kwok, Y.K. Mathematical Models of Financial Derivatives/Y. K. Kwok. -Singapure: Springer Verlag, 1998. -386 p.
  • Panini, R. Option Pricing with Mellin Transforms/R. Panini, R. P. Srivastav//Applied Mathematics Letters. -2003. -V. 18 (4). -P. 471-474.
  • Panini, R. Option Pricing with Mellin Transforms. PhD Thesis/R. Panini. -N.-Y.: Stony Brook University, 2004.
  • Ross, M. S. An elementary Introduction to mathematical Finance/M. S. Ross. -Cambridge: Cambridge University Press, 2003. -270 p.
  • Samarsky, A. A. Numerical methods (in Russian)/A.A. Samarsky, A.V.Gulin. -M.: Mir, 1989. -432 p.
  • Wilmott, P. Derivatives/P. Wilmott. -Chichester: Wiley, 1989.
  • Würfel, A. Analytical und numerical solution of the Black -Scholes equation for European and American Basket Options using Mellin transformations. Diploma Thesis (in German)/A. Wu¨rfel. -Berlin: TU, 2007.
Еще
Краткое сообщение