Application of the Schrodinger equation in exact scalar field cosmology

Бесплатный доступ

We propose a new method of exact solutions construction for scalar field cosmology based on representation of the Einstein-Friedmann dynamic equations as Schr¨odinger-like one. This representation allows one to compare the solutions of quantum-mechanical and cosmological problems. On the other hand, this approach makes it possible to use the well-known form-invariant transformations of the Schr¨odinger equation to generate exact cosmological solutions. As an example of the application of this method, the use of the Darboux transformations in scalar field cosmology is considered. On the other hand, the presented methods make it possible to generalize the obtained solutions to multi-field cosmological models.

Еще

Schr¨odinger equation, inflation, exact solutions

Короткий адрес: https://sciup.org/142230037

IDR: 142230037   |   DOI: 10.17238/issn2226-8812.2020.2.83-94

Список литературы Application of the Schrodinger equation in exact scalar field cosmology

  • Starobinsky A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B, 1980, 91, pp. 99–102.
  • Guth A.H. The inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D, 1981, 23, pp. 347–356.
  • Linde A.D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B, 1982, 108, pp. 389–393.
  • A. Albrecht, P.J. Steinhardt Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett., 1982, 48, pp. 1220–1223.
  • Linde A.D. Chaotic Inflation. Phys. Lett. B, 1983, 129, pp. 177–181.
  • Ivanov G.G. Gravitation and theory of relativity. Kazan University Publishing House, 1981, 18, 54 p.
  • Lucchin F., Matarrese S. Power Law Inflation. Phys. Rev. D, 1985, 32, pp. 1316–1322.
  • Halliwell J.J. Scalar fields in cosmology with an exponential potential. Phys. Lett. B, 1987, 185, pp. 341–344.
  • Salopek D.S., Bond J.R. Nonlinear evolution of long wavelength metric fluctuations in inflationary models. Phys. Rev. D, 1990, 42, pp. 3936–3962.
  • Muslimov A.G. On the scalar field dynamics in a spatially flat Friedman universe. Class. Quantum Grav., 1990, 7, pp. 231–238.
  • Barrow J.D. Exact inflationary universes with potential minima. Phys. Rev. D, 1994, 49, p. 3055.
  • Barrow J.D., Parsons P. Inflationary models with logarithmic potentials. Phys. Rev. D, 1995, 52, pp. 5576–5587.
  • Schunck F.E., Mielke E.W. A New method of generating exact inflationary solutions. Phys. Rev. D, 1994, 50, pp. 4794–4806.
  • Wang W.F. Exact solution in chaotic inflation model with potential minima. Commun. Theor. Phys., 2001, 36, pp. 122–124.
  • Hawkins R.M., Lidsey J.E. The Ermakov-Pinney equation in scalar field cosmologies. Phys. Rev. D, 2002, 66, p. 023523.
  • Motohashi H., Starobinsky A.A., Yokoyama J. Inflation with a constant rate of roll. JCAP, 2015, 1509, 018 p.
  • Kuryanovich E.A. Exact solutions of Friedmann equation. J. Math. Phys., 2016, 57, p. 122503.
  • Fomin I.V., Chervon S.V. Exact and approximate solutions in the Friedmann cosmology. Russ. Phys. J., 2017, 60, pp. 427–440.
  • Chervon S.V., Fomin I.V., Beesham A. The method of generating functions in exact scalar field cosmology. Eur. Phys. J. C, 2018, 78, 301 p.
  • Fomin I.V. Generalized Exact Solutions in the Friedmann Cosmology. Russ. Phys. J., 2018, 61, no. 5, 843 p.
  • Chervon S., Fomin I., Yurov V., Yurov A. Scalar Field Cosmology. Singapore, World Scientific, 2019. 288 p.
  • Zhuravlev V.M., Chervon S.V., Shchigolev V.K. New classes of exact solutions in inflationary cosmology. J. Exp. Theor. Phys., 1998, 87, pp. 223–228.
  • Yurov A.V., Vereshchagin S.D. The Darboux transformation and exactly solvable cosmological models.Theor. Math. Phys., 2004, 139, pp. 787–800.
  • Yurov A.V., Yurov V.A. Friedman versus Abel equations: A connection unraveled. J. Math. Phys., 2010, 51, p. 082503.
  • Barbosa-Cendejas N., Reyes M.A. The Schrodinger picture of standard cosmology. arXiv:1001.0084 [gr-qc], 2010.
  • Fomin I.V., Chervon S.V., Maharaj S.D. A new look at the Schrödinger equation in exact scalar field cosmology. Int. J. Geom. Meth. Mod. Phys., 2018, 16, no. 02, p. 1950022.
  • Chervon S.V. Chiral cosmological models: dark sector fields description. Quantum Matter, 2013, 2, pp. 71–82.
  • Chervon S.V. On the chiral model of cosmological inflation. Russ. Phys. J., 1995, 38, pp. 539–543.
  • Chervon S.V. Chiral non-linear sigma models and cosmological inflation. Grav. Cosmol., 1995, 1, pp. 91–96.
  • Chervon S.V. Exact solutions in standard and chiral inflationary models. Proceedings of 9th Marcell Grossman Conference, Roma, World Scientific, 2001, p. 1909.
  • Chervon S.V. A global evolution of the universe filled with scalar or chiral fields. Grav. Cosmol. Suppl., 2002, 8, p. 32.
  • Chervon S.V., Fomin I.V., Kubasov A.S. Scalar and Chiral Cosmological Fields. Ulyanovsk, Ulyanovsk State Pedagogical University Publ., 2015, 215 p.
  • Poschl G., Teller E. Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Z. Physik, 1933, 83, p. 143.
  • Darboux G. Sur une Proposition Relative aux equations Lineaires. Comptes Rendus, 1882, 94, pp. 1456–1459, arXiv:physics/9908003.
  • Matveev V.B., Salle M.A. Darboux Transformations and Solitons. Berlin, Springer-Verlag, 1991. 120 p.
  • Chaohao Gu, Hesheng Hu, Zixiang Zhou, Darboux Transformations in Integrable Systems. Mathematical Physics Studies (Book 26) Dordrecht, Springer, 2005. 308 p.
  • van de Bruck C., Weller J.M. Quintessence dynamics with two scalar fields and mixed kinetic terms. Phys. Rev. D, 2009, 80, p. 123014.
  • Fomin I.V., Chervon S.V. Exact inflation in Einstein-Gauss-Bonnet gravity. Grav. Cosmol., 2017, 23, pp. 367–374.
  • Fomin I.V., Morozov A.N. The high-frequency gravitational waves in exact inflationary models with Gauss-Bonnet term. J. Phys. Conf. Ser., 2017, 798, no. 1, p. 012088.
  • Fomin I.V., Chervon S.V. A new approach to exact solutions construction in scalar cosmology with a Gauss-Bonnet term. Mod. Phys. Lett. A, 2017, 32, no. 25, p. 1750129.
  • Fomin I.V. Cosmological Inflation with Einstein-Gauss-Bonnet Gravity. Phys. Part. Nucl., 2018, 49, no. 4, p. 525.
  • Fomin I.V., Chervon S.V. Inflation with explicit parametric connection between General Relativity and Scalar-Tensor gravity. Mod. Phys. Lett. A, 2018, 33, no. 28, p. 1850161.
  • Fomin I.V., Chervon S.V. Reconstruction of general relativistic cosmological solutions in modified gravity theories. Phys. Rev. D, 2019, 100, no. 2, p. 023511.
  • Chervon S.V., Fomin I.V., Pozdeeva E.O., Sami M., Vernov S.Y. Superpotential method for chiral cosmological models connected with modified gravity. Phys. Rev. D, 2019, 100, no. 6, p. 063522.
  • Mukhanov V.F., Feldman H.A., Brandenberger R.H. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept., 1992, 215, p. 203.
  • Straumann N. From primordial quantum fluctuations to the anisotropies of the cosmic microwave background radiation. Annalen Phys., 2006, 15, p. 701
  • Aghanim N. et al. [Planck Collaboration]. Planck 2018 results. VI. Cosmological parameters. arXiv:1807.06209 [astro-ph.CO].
Еще
Статья научная