Artin's theorem for $f$-rings
Автор: Kusraev Anatoly Georgievich
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 2 т.17, 2015 года.
Бесплатный доступ
The main result states that each positive polynomial $p$ in $N$ variables with coefficients in a unital Archimedean $f$-ring $K$ is representable as a sum of squares of rational functions over the complete ring of quotients of $K$ provided that $p$ is positive on the real closure of $K$. This is proved by means of Boolean valued interpretation of Artin's famous theorem which answers Hilbert's 17th problem affirmatively.
$f$-ring, complete ring of quotients, real closure, polynomial, rational function, artin''s theorem, hilbert 17th problem, boolean valued representation
Короткий адрес: https://sciup.org/14318498
IDR: 14318498
Список литературы Artin's theorem for $f$-rings
- Anderson F. W. Lattice-ordered rings of quotients//Canad. J. Math.-1965.-Vol. 17.-P. 434-448.
- Bigard A., Keimel K., and Wolfenstein S. Groupes et Anneaux R\'eticul\'es.-Berlin etc.: Springer-Verlag, 1977.-xi+334 p.-(Lecture Notes in Math., Vol. 608).
- Bochnak J., Coste M., and Roy M.-F. Real Algebraic Geometry.-Berlin a. o.: Springer, 1998.-x+430 p.
- Delzell C. N., Gonz\'alez-Vega L., and Lombardi H. A continuous and rational solution to Hilbert's 17th problem and several cases of the Positivstellensatz//Computational Alg. Geom./Eds. F. Eyssette and A. Galligo.-Birkh\"auser: Boston a. o., 1993.-P. 61-75.-(Progress in Math., Vol. 109).
- Gordon E. I. Real numbers in Boolean-valued models of set theory and $K$-spaces//Dokl. Akad. Nauk SSSR.-1977.-Vol. 237, \No 4.-P. 773-775.
- Gordon E. I. Rationally Complete Semiprime Commutative Rings in Boolean Valued Models of Set Theory.-Gor'ki\u \i, 1983.-35 p.-(VINITI, \No 3286-83).
- Henriksen M. and Isbell J. R. Lattice-ordered rings and function rings//Pacific J. Math.-1962.-Vol. 12.-P. 533-565.
- Knebusch M. and Zhang D. Convexity, Valuations and Pr\"ufer extensions in real algebra//Documenta Math.-2005.-Vol. 10.-P. 1-109.
- Kusraev A. G. and Kutateladze S. S. Introduction to Boolean Valued Analysis .-M.: Nauka, 2005.-526 p.
- Kusraev A. G. and Kutateladze S. S. Boolean Valued Analysis: Selected Topics.-Vladikavkaz: SMI VSC RAS, 2014.-iv+400 p.
- Lambek J. Lectures on rings and modules.-Toronto: Blaisdell Publ. Comp., 1966.-183 p.-(AMS Chelesea publishing. Providence, R. I.).
- Lombardi H., Perrucci D., and Roy M.-F. An elementary recursive bound for effective Positivstellensatz and Hilbert 17th problem.-2014.-arXiv:1404.2338v2 .
- Prasolov V. V. Polynomials.-Berlin-Heidelberg: Springer-Verlag, 2010.-301 p.
- Prestel A. and Delzell Ch. N. Positive Polynomials: From Hilbert's 17th Problem to Real Algebra.-Berlin a. o.: Springer, 2001.-viii+267 p.
- Schwartz N. The basic theory of real closed spaces.-Providence (R. I.): Amer. Math. Soc., 1989.-122 p.-(Mem. Amer. Math. Soc. Vol. 77 (397)).
- Takeuti G. Two Applications of Logic to Mathematics.-Princeton: Princeton Univ. Press, 1978.
- Takeuti G. A transfer principle in harmonic analysis//Symbolic Logic.-1979.-Vol. 44, \No 3.-P. 417-440.