Berberine in emulsions: possibilities to stimulate GABA production in yogurt

Бесплатный доступ

A wide range of bioactive components such as vitamins, bacteriocins, bioactive peptides and bioactive compounds can be obtained in the process of fermentation with lactic acid bacteria (LAB), which are commonly used in various fermented food products, including fermented milk products. The ingredients produced in the process of fermentation of raw milk form the attractiveness of finished products for consumers in the functional products segment due to the provided usefulness due to their bioactivity and health benefits. To increase the level of usefulness, a significant part of fermented milk products are enriched with bioactive ingredients that can act as activators of starter microflora. The fortificates used are relevant both as in situ components and functional additives. Berberine (BB) requires special attention as a fortificate; it has been used in various formulas for a long time due to its pharmacological action. Berberine has very limited oral bioavailability, despite a wide range of pharmacological action. Gut microbiota has become a hot topic in recent years for investigating the modes of action of herbal medicines. BB has minimal toxicity and provides therapeutic benefits at recommended dosages. Numerous studies have shown that BB can interact with gut microbiota and exhibit altered pharmacological effects as a result of its poor bioavailability. The proposed material evaluates the possibility of using BB in double emulsions for the fortification of fermented milk products using yogurt as an example, as the most attractive to consumers, as well as an answer to the question regarding its technological suitability as an activator for the synthesis of gamma-aminobutyric acid in the final product.

Еще

Lactic acid bacteria, berberine, emulsions, functional additives, toxicity, bioavailability

Короткий адрес: https://sciup.org/147244568

IDR: 147244568   |   DOI: 10.14529/food240302

Список литературы Berberine in emulsions: possibilities to stimulate GABA production in yogurt

  • Caliceti C., Franco P., Spinozzi S., Roda A., Cicero A.F. Berberine: New Insights from Phar-macological Aspects to Clinical Evidences in the Management of Metabolic Disorders. Curr. Med. Chem. 2016; 23:, 1460–1476.
  • Cicero A.F., Baggioni A. Berberine and Its Role in Chronic Disease. Adv. Exp. Med. Biol. 2016; 928: 27–45.
  • Habtemariam S. Berberine and inflammatory bowel disease: A concise review. Pharmacol. Res. 2016; 113(Pt A): 592–599
  • Wang K., Feng X., Chai L., Cao S., Qiu F. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab. Rev. 2017a; 49: 139–157.
  • Yang Y., Kang N., Xia H., Li J., Chen L., Qiu F. Metabolites of protoberberine alkaloids in human urine following oral administration of Coptidis Rhizoma decoction. Planta. Med. 2010; 76: 1859–1863.
  • Jin Y., Khadka D.B., Cho W.J. Pharmacological effects of berberine and its derivatives: a patent update. Expert Opin. Ther. Pat. 2016; 26: 229–243.
  • Tang M., Yuan D., Liao P. Berberine improves intestinal barrier function and reduces inflam-mation, immunosuppression, and oxidative stress by regulating the NF-kB/MAPK signaling pathway in deoxynivalenol-challenged piglets. Environ Pollut. 2021; 289: 117865.
  • Li J., Wei H. Establishment of an efficient germ-free animal system to support functional microbiome research. Sci China Life Sci. 2019; 62: 1400–3.
  • Park Y.S., Kim Y.S., Shin D.W. Changes in physiochemical characteristics and microbial popu-lations during storage of lactic acid bacterial fermented vegetable yogurt. Food Sci. Biotechnol. 2003; 12: 654–658.
  • Anjum N., Maqsood S., Masud T., Ahmad A., Sohail A., Momin A. Lactobacillus acidophilus: characterization of the species and application in food production. Crit Rev Food Sci Nutr. 2014; 54: 1241–1251.
  • Rossi F., Amadoro C., Gasperi M., Colavita G. Lactobacilli infection case reports in the last three years and safety implications. Nutrients. 2022; 14: 1178.
  • Hill D., Sugrue I., Tobin C., Hill C., Stanton C., Ross R.P. The Lactobacillus casei Group: History and Health Related Applications. Front Microbiol. 2018; 9: 2107.
  • Fidanza M., Panigrahi P., Kollmann T.R. Lactiplantibacillus plantarum-Nomad and Ideal Pro-biotic. Front Microbiol. 2021; 12: 712236.
  • Gupta T., Kaur H., Kapila S., Kapila R. Potential probiotic Lacticaseibacillus rhamnosus MTCC-5897 attenuates Escherichia coli induced inflammatory response in intestinal cells. Arch Microbiol. 2021; 203: 5703–5713
  • Miao Z., Zheng H., Liu W.H., Cheng R., Lan H., Sun T., Zhao W., Li J., Shen X., Li H., Feng H., Hung W.L., He F. Lacticaseibacillus paracasei K56 Attenuates High-Fat Diet-Induced Obesity by Modulating the Gut Microbiota in Mice. Probiotics Antimicrob Proteins. 2022. DOI: 10.1007/s12602-022-09911-x
  • Tang Q., Hao Y., Wang L., Lu C., Li M., Si Z., Wu X., Lu Z. Characterization of a bacterial strain Lactobacillus paracasei LP10266 recovered from an endocarditis patient in Shandong, China. BMC Microbiol. 2021; 21: 183
  • Zheng D., Wang Z., Sui L., Xu Y., Wang L., Qiao X., Cui W., Jiang Y., Zhou H., Tang L., Li Y. Lactobacillus johnsonii activates porcine monocyte derived dendritic cells maturation to modulate Th cellular immune response. Cytokine. 2021; 144: 155581
  • Wang X.L., Liu Z.Y., Li Y.H., Yang L.Y., Yin J., He J.H., Hou D.X., Liu Y.L., Huang X.G. Effects of Dietary Supplementation of Lactobacillus delbrueckii on Gut Microbiome and Intestinal Morphology in Weaned Piglets. Front Vet Sci. 2021; 8: 692389.
  • Maillet F., Passeron A., Podglajen I., Ranque B., Pouchot J. Lactobacillus delbrueckii urinary tract infection in a male patient. Med Mal Infect. 2019; 49: 226–228
  • Dargenio C., Dargenio V.N., Bizzoco F., Indrio F., Francavilla R., Cristofori F. Limosilactobacillus reuteri Strains as Adjuvants in the Management of Helicobacter pylori Infection. Medicina (Kaunas). 2021; 57: 733.
  • Guerrero Sanchez M., Passot S., Campoy S., Olivares M., Fonseca F. Ligilactobacillus salivarius functionalities, applications, and manufacturing challenges. Appl Microbiol Biotechnol. 2022; 106: 57–80.
  • Salminen M.K., Rautelin H., Tynkkynen S., Poussa T., Saxelin M., Valtonen V., Jarvinen A. Lactobacillus bacteremia, species identification, and antimicrobial susceptibility of 85 blood isolates. Clin Infect Dis. 2006; 42: e35-44
  • Kim J., Yun J.M., Kim M.K., Kwon O., Cho B. Lactobacillus gasseri BNR17 Supplementation Reduces the Visceral Fat Accumulation and Waist Circumference in Obese Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. J Med Food. 2018; 21: 454–461.
  • Mann S., Park M.S., Johnston T.V., Ji G.E., Hwang K.T., Ku S. Oral probiotic activities and biosafety of Lactobacillus gasseri HHuMIN D. Microb Cell Fact. 2021; 20: 75
  • Yang B., Li M., Wang S., Ross R.P., Stanton C., Zhao J., Zhang H., Chen W. Lactobacillus ruminis Alleviates DSS-Induced Colitis by Inflammatory Cytokines and Gut Microbiota Modulation. Foods. 2021; 10: 1349.
  • Moore J.F., DuVivier R., Johanningsmeier S.D. Changes in the free amino acid profile of pick-ling cucumber during lactic acid fermentation. J Food Sci. 2022; 87: 599–611.
  • Majsnerowska M., Noens E.E.E., Lolkema J.S. Arginine and Citrulline Catabolic Pathways Encoded by the arc Gene Cluster of Lactobacillus brevis ATCC 367. J Bacteriol. 2018; 200: e00182-18.
  • Kim J., Lee M.H., Kim M.S., Kim G.H., Yoon S.S. Probiotic Properties and Optimization of Gamma-aminobutyric Acid Production by Lactiplantibacillus plantarum FBT215. J Microbiol Biotechnol. 2022a; 32: 1–10.
  • Kim J., Yoon Y.W., Kim M.S., Lee M.H., Kim G.A., Bae K., Yoon S.S. Gamma-aminobutyric acid fermentation in MRS-based medium by the fructophilic Lactiplantibacillus plantarum Y7. Food Sci Biotechnol, 2022b; 31: 333–341.
  • Franciosi E., Carafa I., Nardin T., Schiavon S., Poznanski E., Cavazza A., Larcher R., Tuohy K.M. Biodiversity and gamma-aminobutyric acid production by lactic acid bacteria isolated from tradi-tional alpine raw cow's milk cheeses. Biomed Res Int. 2015: 625740.
  • Fabersani E., Marquez A., Russo M., Ross R., Torres S., Fontana C., Puglisi E., Medina R., Gauffin-Cano P. Lactic Acid Bacteria Strains Differently Modulate Gut Microbiota and Metabolic and Immunological Parameters in High-Fat Diet-Fed Mice. Front Nutr. 2021; 8: 718564.
  • Taraskina A., Ignatyeva O., Lisovaya D., Ivanov M., Ivanova L., Golovicheva V., Baydakova G., Silachev D., Popkov V., Ivanets T., Kashtanova D., Yudin V., Makarov V., Abramov I., Lukashina M., Rakova V., Zagainova A., Zorov D., Plotnikov E., Sukhikh G., Yudin S. Effects of Traumatic Brain Injury on the Gut Microbiota Composition and Serum Amino Acid Profile in Rats. Cells. 2022; 11: 1409.
  • Horvath T.D., Haidacher S.J., Engevik M.A., Luck B., Ruan W., Ihekweazu F., Bajaj M., Hoch K.M., Oezguen N., Spinler J.K., Versalovic J., Haag A.M. Interrogation of the mammalian gut-brain axis using LC-MS/MS-based targeted metabolomics with in vitro bacterial and organoid cultures and in vivo gnotobiotic mouse models. Nat Protoc. 2022. DOI: 10.1038/s41596-022-00767-7
  • Zhang X., Zhao Y., Zhang M., Pang X., Xu J., Kang C. et al. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PloS One, 2012; 7: e42529.
  • Cui H.X., Hu Y.N., Li J.W., Yuan K., and Guo Y. Preparation and Evaluation of Antidiabetic Agents of Berberine Organic Acid Salts for Enhancing the Bioavailability. Molecules, 2018; 24: 103.
  • Guo Y., Zhang Y., Huang W., Selwyn F.P., Klaassen C.D. Doseresponse effect of berberine on bile acid profile and gut microbiota in mice. BMC Complement. Altern. Med. 2016; 16: 394.
  • Gong J., Hu M., Huang Z., Fang K., Wang D., Chen Q., et al. Berberine Attenuates Intestinal Mucosal Barrier Dysfunction in Type 2 Diabetic Rats. Front. Pharmacol. 2017; 8: 42.
  • Roediger W.E. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 1983; 83: 424–429.
  • Wang Y., Shou J.W., Li X.Y., Zhao Z.X., Fu J., He C.Y., et al. Berberine-induced bioactive metabolites of the gut microbiota improve energy metabolism. Metabolism, 2017b; 70: 72–84.
  • Cok A., Plaisier C., Salie M.J., Oram D.S., Chenge J., Louters L.L. Berberine acutely activates the glucose transport activity of GLUT1. Biochimie, 2011; 93: 1187–1192.
  • Ghavipanje N., Fathi Nasri M.H., Farhangfar S.H., Ghiasi S.E., Vargas-Bello-Pérez E. The Im-pact of Dietary Berberine Supplementation during the Transition Period on Blood Parameters, Antioxi-dant Indicators and Fatty Acids Profile in Colostrum and Milk of Dairy Goats. Vet. Sci. 2022; 9: 76.
  • Suez J., Zmora N., Segal E., Elinav E. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019; 25: 716–729.
  • Wu H., Esteve E., Tremaroli V., Khan M.T., Caesar R., Mannerås-Holm L., Ståhlman M. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 2017; 23: 850–858.
Еще
Статья научная