Biocompatible implants in orthopedics: bone tissue engineering

Автор: Popkov A.V., Popkov D.A.

Журнал: Гений ортопедии @geniy-ortopedii

Рубрика: Обзор литературы

Статья в выпуске: 6 т.29, 2023 года.

Бесплатный доступ

Introduction Technological advances in bone tissue engineering have improved orthopaedic implants and surgical techniques for bone reconstruction. This approach allows overcoming inconvenience of the paucity of autologous materials available and donor site morbidity.Aim To demonstrate advances of the past 30 years in the development of bioimplants providing alternatives to bone grafting in reconstructive orthopaedics.Methods Preparing the review, the scientific platforms such as PubMed, Scopus, ResearchGate, RSCI were used for information searching. Search words or word combinations were bioactive osteoinductive implants, bone grafting, bone reconstruction, hydroxyapatite, bone scaffolds.Results The main trends in tissue engineering in the field of orthopaedics are represented by construction of three-dimensional structure implants guiding cell migration, proliferation and differentiation as well as mechanical support. Association with bone morphogenetic proteins, growth factors enables proliferation and differentiation of cell types of the targeted bone tissue. A promising advancement should be biodegradability with a controllable degradation rate to compliment cell/tissue in-growth and maturation in limb reconstruction.Discussion This review presents and discusses the experimental and clinical application of biotolerant, bioinert and bioactive materials for reconstructive bone surgery. Future generations of biomaterials are designed to be osteoconductive and osteoinductive.Conclusion Properties of polycaprolactone (PCL) filled with hydroxyapatite (from 10 to 50 wt %) make this hybrid material with controllable absorption a promising strategy for reconstructive surgery in comparison to other materials.

Еще

Bone tissue engineering, reconstructive orthopedics, clinical translation

Короткий адрес: https://sciup.org/142240039

IDR: 142240039   |   DOI: 10.18019/1028-4427-2023-29-6-662-668

Список литературы Biocompatible implants in orthopedics: bone tissue engineering

  • Shevtsov VI, Popkov AV. Operative lengthening of the lower extremities. M.: Medicine; 1998:192. (In Russ.)
  • Shevtsov VI. Shved SI, Sysenko YM. Transosseous osteosynthesis in the treatment of comminuted fractures. Kurgan; 2002:331. (In Russ.)
  • Lascombes P, Popkov D, Huber H, et al. Classification of complications after progressive long bone lengthening: proposal for a new classification. Orthop Traumatol Surg Res. 2012;98(6):629-637. doi: 10.1016/j.otsr.2012.05.010
  • Curran AR, Kuo KN, Lubicky JP. Simultaneous ipsilateral femoral and tibial lengthening with the Ilizarov method. J Pediatr Orthop. 1999;19(3):386-390.
  • Vargas Barreto B, Caton J, Merabet Z, et al. Complications of Ilizarov leg lengthening: a comparative study between patients with leg length discrepancy and short stature. Int Orthop. 2007;31(5):587-591. doi: 10.1007/s00264-006-0236-2
  • Launay F, Jouve JL, Guillaume JM, et al. Les allongements progressifs de l'avant-bras chez l'enfant [Progressive forearm lengthening in children: 14 cases]. Rev Chir Orthop Reparatrice Appar Mot. 2001;87(8):786-795. (In French)
  • Song HR, Myrboh V, Oh CW, et al. Tibial lengthening and concomitant foot deformity correction in 14 patients with permanent deformity after poliomyelitis. Acta Orthop. 2005;76(2):261-269. doi: 10.1080/00016470510030670
  • Sluga M, Pfeiffer M, Kotz R, Nehrer S. Lower limb deformities in children: two-stage correction using the Taylor spatial frame. J Pediatr Orthop B. 2003;12(2):123-128. doi: 10.1097/01.bpb.0000049578.53117.03
  • Stanitski DF, Shahcheraghi H, Nicker DA, Armstrong PF. Results of tibial lengthening with the Ilizarov technique. J Pediatr Orthop. 1996;16(2):168-172. doi: 10.1097/00004694-199603000-00006
  • Eralp L, Kocaoglu M, Ozkan K, Türker M. A comparison of two osteotomy techniques for tibial lengthening. Arch Orthop Trauma Surg. 2004;124(5):298-300. doi: 10.1007/s00402-004-0646-9
  • Ielo I, Calabrese G, De Luca G, Conoci S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int J Mol Sci. 2022;23(17):9721. doi: 10.3390/ijms23179721
  • Kaspiris A, Hadjimichael AC, Vasiliadis ES, et al. Therapeutic Efficacy and Safety of Osteoinductive Factors and Cellular Therapies for Long Bone Fractures and Non-Unions: A Meta-Analysis and Systematic Review. J Clin Med. 2022;11(13):3901. doi: 10.3390/jcm11133901
  • Calcium phosphate-based ceramic and composite materials for medicine. Russian Chemical Reviews. 2010;79(1):13-29. doi: 10.1070/ RC2010v079n01ABEH004098
  • Chaturvedi TP. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J Dent Res. 2009;20(1):91-98. doi: 0.4103/0970-9290.49068
  • Filip DG, Surdu VA, Paduraru AV, Andronescu E. Current Development in Biomaterials-Hydroxyapatite and Bioglass for Applications in Biomedical Field: A Review. J Funct Biomater. 2022;13(4):248. doi: 10.3390/jfb13040248
  • Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research.1998;13(1), 94-117. doi: 10.1557/JMR.1998.0015
  • Steinemann SG. Corrosion of surgical implants - in vivo and in vitro tests, eds. Winter GD, Leray JL, de Goot K. Evaluation of biomaterials, advances in biomaterials. Chichester: Wiley; 1980;1:1-34.
  • Thull R. Titan in der Zahnheikunde - Grundlangen. Z. Mitteilungen. 1992;82:39-4S.
  • Gross U, Brandes J, Strunz V, et al. The ultrastructure of the interface between a glass ceramic and bone. J Biomed Mater Res. 1981;1S(3):291-30S. doi: 10.1002/jbm.8201S0302
  • Bauer IW, Li SP, Han YC, et al. Internalization of hydroxyapatite nanoparticles in liver cancer cells. J Mater Sci Mater Med. 2008;19(3):1091-109S. doi: 10.1007/s108S6-007-3124-4
  • Hulbert SF, Cooke FW, Klawitter JJ, et al. Attachment of prostheses to the musculoskeletal system by tissue ingrowth and mechanical interlocking. J Biomed Mater Res. 1973;7(3):1-23. doi: 10.1002/jbm.820070303
  • Greenspan DC, Hench LL. Chemical and mechanical behavior of bioglass-coated alumina. J Biomed Mater Res. 1976;10(4):S03-S09. doi: 10.1002/ jbm.82010040S
  • Gross KA, Ray N, R0kkum M. The contribution of coating microstructure to degradation and particle release in hydroxyapatite coated prostheses. J Biomed Mater Res. 2002;63(2):106-114. doi: 10.1002/jbm.10090
  • Saravanapavan P, Jones JR, Pryce RS, Hench LL. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2OS-SiO2) and quaternary glasses (SiO2-CaO-P2OS-Na2O). J Biomed Mater Res A. 2003;66(1):110-119. doi: 10.1002/jbm.a.10S32
  • Plenk H Jr. Prosthesis-bone interface. J Biomed Mater Res. 1998;43(4):3S0-3SS. doi: 10.1002/(sici)1097-4636(199824)43:4<3S0::aid-jbm2-3.0.co;2-s
  • Anselme K, Noël B, Hardouin P. Human osteoblast adhesion on titanium alloy, stainless steel, glass and plastic substrates with same surface topography. J Mater Sci Mater Med. 1999;10(12):81S-819. doi: 10.1023/a:1008992109670
  • Keller JC, Collins JG, Niederauer GG, McGee TD. In vitro attachment of osteoblast-like cells to osteoceramic materials. Dent Mater. 1997;13(1):62-8. doi: 10.1016/s0109-S641(97)80010-3
  • Zinger O, Anselme K, Denzer A, et al. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials. 2004;2S(14):269S-711. doi: 10.1016/j.biomaterials.2003.09.111
  • Thomas KA, Cook SD, Haddad RJ Jr, et al. Biologic response to hydroxylapatite-coated titanium hips. A preliminary study in dogs. J Arthroplasty. 1989;4(1):43-S3. doi: 10.1016/s0883-S403(89)800S3-1
  • Jansen JA, van de Waerden JP, Wolke JG, de Groot K. Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants. J Biomed Mater Res. 1991;2S(8):973-989. doi: 10.1002/jbm.8202S080S
  • Dhert WJ, Klein CP, Jansen JA, et al. A histological and histomorphometrical investigation of fluorapatite, magnesiumwhitlockite, and hydroxylapatite plasma-sprayed coatings in goats. J Biomed Mater Res. 1993;27(1):127-38. doi: 10.1002/jbm.820270116
  • S0balle K, Hansen ES, Brockstedt-Rasmussen H, et al. Gap healing enhanced by hydroxyapatite coating in dogs. Clin Orthop Relat Res. 1991;(272):300-307.
  • Stephenson PK, Freeman MA, Revell PA, et al. The effect of hydroxyapatite coating on ingrowth of bone into cavities in an implant. J Arthroplasty. 1991;6(1):S1-S8. doi: 10.1016/s0883-S403(06)801S7-9
  • Oliveira AS, Silva JC, Figueiredo L, et al. High-performance bilayer composites for the replacement of osteochondral defects. Biomater Sci. 2022;10(20):5856-5875. doi: 10.1039/d2bm00716a
  • Zaed I, Cardia A, Stefini R. From Reparative Surgery to Regenerative Surgery: State of the Art of Porous Hydroxyapatite in Cranioplasty. Int J Mol Sci. 2022;23(10):S434. doi: 10.3390/ijms2310S434
  • Sarkar SK, Lee BT. Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med. 201S;30(3):279-293. doi: 10.3904/kjim.201S.30.3.279
  • Nakamura T. Biomaterial osteoinduction. J Orthop Sci. 2007;12(2):111-112. doi: 10.1007/s00776-007-1109-2
  • Dorozhkin SV. Calcium orthophosphate deposits: Preparation, properties and biomedical applications. Mater Sci Eng C Mater Biol Appl. 201S;SS:272-326. doi: 10.1016/j.msec.201S.0S.033
  • LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108(11):4742-S3. doi: 10.1021/cr800427g
  • Popkov AV, Popkov DA. Bioactive implants in traumatology and orthopaedics. Irkutsk: NTsRVKH SO RAMS; 2012:438. (In Russ.)
  • Popkov AV, Popkov DA, Borzunov DYu. Directed osteoinduction for bone fibrous dysplasia. Genij Ortopedii. 2013;(1):81-86. (In Russ.)
  • Popkov A, Kononovich N, Gorbach E, Popkov D. Osteointegration technology in long bone defect reconstruction: experimental study. Acta Bioeng Biomech. 2020;22(4):8S-91.
  • Agadzhanyan VV, Tverdokhlebov SI, Bolbasov EN, Ignatov VP, Shesterikov EV. Osteoinductive coatings based on calcium phosphates and prospects for their usage in polytrauma treatment. Polytrauma. 2011;(3):S-13. (In Russ.)
  • Aronov AM, Bolbasov EN, Guzeev VV. Biocomposites based on a copolymer of tetrafluoroethylene with vinylidene fluoride filled with hydroxyapatite and the possibility of their use as a coating for intramedullary implants. Med Technol. 2010;(3):S-13. (In Russ.)
  • Aronov AM, Pichugin VF, Tverdokhlebov SI. Methodological bases for the development and organization of the production of medical products. Tomsk: Veter; 2007:334. (In Russ.)
  • Yannas IV. What criteria should be used for designing artificial skin replacements and how well do the current grafting materials meet these criteria? J Trauma. 1984;24(9 Suppl):S29-39.
  • Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol. 1998;16(3):247-2S2. doi: 10.1038/ nbt0398-247
  • Khoninov BV, Sergunin ON, Skoroglyadov PA. Biodegradable materials application in traumatology and orthopedics (Review). Bulletin of the Russian State Medical University. 2014;(1):20-24. (In Russ.)
  • Rokkanen PU, Böstman O, Hirvensalo E, et al. Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials. 2000;21(24):2607-2613. doi: 10.1016/s0142-9612(00)00128-9
  • Ruedi T. AO Principles of Fracture Management: Vol. 1: Principles. Buckley RE (Ed., Contrib.), Moran CG (Ed., Contrib.). 2013; Berlin, Wassa Media. 1:1-8,32-46,212-226.
  • Khoninov BV, Sergunin ON, Skoroglyadov PA. Clinical efficacy analysis of biodegradable implants application on the surgical treatment of hallux valgus. Bulletin of the Russian State Medical University. 201S;(3):20-24. (In Russ.)
  • Nishizuka T, Kurahashi T, Hara T, et al. Novel intramedullary-fixation technique for long bone fragility fractures using bioresorbable materials. PLoS One. 2014;9(8):e104603. doi: 10.1371/journal.pone.0104603
  • Gaiarsa GP, Dos Reis PR, Mattar R Jr, et al. Comparative study between osteosynthesis in conventional and bioabsorbable implants in ankle fractures. Acta Ortop Bras. 201S;23(S):263-267. doi: 10.1590/1413-785220152305121124
  • Zhang J, Ebraheim N, Lausé GE, et al. A comparison of absorbable screws and metallic plates in treating calcaneal fractures: a prospective randomized trial. J Trauma Acute Care Surg. 2012;72(2):E106-10. doi: 10.1097/ta.0b013e3182231811
  • Agadzhanyan VV, Pronskikh AA, Demina VA, et al. Biodegradable implants in orthopedics and traumatology. Our first experience. Polytrauma. 2016;(4):8S-93.
  • Zamora R, Jackson A, Seligson D. Correct techniques for the use of bioabsorbable implants in orthopaedic trauma. Current Orthopaedic Practice. 2016;27(4): 469-73. doi: 10.1097/Bœ.0000000000000378
  • Castaño O, Sachot N, Xuriguera E, et al. Angiogenesis in bone regeneration: tailored calcium release in hybrid fibrous scaffolds. ACS Appl Mater Interfaces. 2014;6(10):7S12-22. doi: 10.1021/amS0088Sv
  • Kulkarni RK, Pani KC, Neuman C, Leonard F. Polylactic acid for surgical implants. Arch Surg. 1966;93(S):839-43. doi: 10.1001/ archsurg.1966.013300S0143023
  • Kulkarni RK, Moore EG, Hegyeli AF, Leonard F. Biodegradable poly(lactic acid) polymers. J Biomed Mater Res. 1971;S(3):169-81. doi: 10.1002/ jbm.8200S030S
  • Waris E, Konttinen YT, Ashammakhi N, et al. Bioabsorbable fixation devices in trauma and bone surgery: current clinical standing. Expert Rev Med Devices. 2004;1(2):229-40. doi: 10.1S86/17434440.1.2.229
  • Vainionpää S, Rokkanen P, Törmälä P. Surgical applications of biodegradable polymers in human tissues. Progress Polymer Science. 1989;14(S):679-716. doi: 10.1016/0079-6700(89)90013-0
  • Speer KP, Warren RF. Arthroscopic shoulder stabilization. A role for biodegradable materials. Clin Orthop Relat Res. 1993;(291):67-74.
  • Merolli A, Nicolais L, Ambrosio L, Santin M. A degradable soybean-based biomaterial used effectively as a bone filler in vivo in a rabbit. Biomed Mater. 2010;S(1):1S008. doi: 10.1088/1748-6041/S/1/01S008
  • Isyar M, Yilmaz I, Nusran G, et al. Safety of bioabsorbable implants in vitro. BMC Surg. 201S;1S:127. doi: 10.1186/s12893-01S-0111-4
  • Yakimov LA, Slinyakov LYu, Bobrov DS, et al. Biodegradable implants. Formation and development. Advantages and disadvantages. (review of literature). Department of Traumatology and Orthopedics. 2017;1:47-52. (In Russ.)
  • Andriano KP, Pohjonen T, Törmälä P. Processing and characterization of absorbable polylactide polymers for use in surgical implants. J Appl Biomater. 1994;5(2):133-140. doi: 10.1002/jab.770050206
  • Eglin D, Alini M. Degradable polymeric materials for osteosynthesis: tutorial. Eur Cell Mater. 2008;16:80-91. doi: 10.22203/ecm.v016a09
  • Kontakis GM, Pagkalos JE, Tosounidis TI, et al. Bioabsorbable materials in orthopaedics. Acta Orthop Belg. 2007;73(2):159-169.
  • Pina S, Ferreira JMF. Bioresorbable Plates and Screws for Clinical Applications: A Review. J Healthcare Engineering. 2012;3(2):243-260. doi: 10.1260/2040-2295.3.2.243
  • Sheikh Z, Najeeb S, Khurshid Z, et al. Biodegradable Materials for Bone Repair and Tissue Engineering Applications. Materials (Basel). 2015;8(9):5744-5794. doi: 10.3390/ma8095273
  • Landes CA, Ballon A, Roth C. Maxillary and mandibular osteosyntheses with PLGA and P(L/DL)LA implants: a 5-year inpatient biocompatibility and degradation experience. Plast Reconstr Surg. 2006;117(7):2347-2360. doi: 10.1097/01.prs.0000218787.49887.73
  • Shilova AN, Ilarionov SA. Biopolymers based on lactide. Bulletin of Perm University. 2015;1(17):86-92. (In Russ.)
  • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529-2543. doi: 10.1016/s0142-9612(00)00121-6
  • Strycker ML. Biodegradable internal fixation. J Foot Ankle Surg.. 1995;34(1):82-88. doi: 10.1016/S1067-2516(09)80107-5
  • Ciccone WJ 2nd, Motz C, Bentley C, Tasto JP. Bioabsorbable implants in orthopaedics: new developments and clinical applications. J Am Acad Orthop Surg. 2001;9(5):280-188. doi: 10.5435/00124635-200109000-00001
  • Daniels AU, Chang MK, Andriano KP. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater. 1990;1(1):57-78. doi: 10.1002/jab.770010109
  • Young A, Maia R, Moraga C, et al. Latarjet-Bristow Procedure Performed With Bioabsorbable Screws: Computed Tomography Evidence of Healing. Techniques in Shoulder and Elbow Surgery. 2010;11(3):85-89. doi: 10.1097/BTE.0b013e3181edf171
  • Washington MA, Swiner DJ, Bell KR, et al. The impact of monomer sequence and stereochemistry on the swelling and erosion of biodegradable poly(lactic-co-glycolic acid) matrices. Biomaterials. 2017;117:66-76. doi: 10.1016/j.biomaterials.2016.11.037
  • Välimaa T, Laaksovirta S. Degradation behaviour of self-reinforced 80L/20G PLGA devices in vitro. Biomaterials. 2004;25(7-8):1225-32. doi: 10.1016/j.biomaterials.2003.08.072
  • Golubev VG, Starostenkov AN. Bioabsorbable screws as a new facility for calcaneal fractures treatment. Department of Traumatology and Orthopedics. 2017;(2):25-30. (In Russ.)
  • Böstman O, Hirvensalo E, Mäkinen J, Rokkanen P. Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg Br. 1990;72(4):592-596. doi: 10.1302/0301-620X.72B4.2199452
  • Böstman OM. Metallic or absorbable fracture fixation devices. A cost minimization analysis. Clin Orthop Relat Res. 1996;(329):233-9.
  • Golubev VG, Starostenkov AN. Operative technique features in application of bioabsorbable implants for limb fractures treatment. Surgical practice. 2017;(2):5-13. (In Russ.)
  • Golubev VG, Zelenyak KB, Starostenkov AN. Bioabsorbable implants in treatment Of ankle fractures (comparative study). Department of Traumatology and Orthopedics. 2018;(2): 66-73. (In Russ.) doi: 10.17238/issn2226-2016.2018.2.66-73
  • Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am. 1998;80(7):985-96. doi: 10.2106/00004623-199807000-00007
  • Ivanov SY, Panasyuk AF, Panin AM et al. Experience in the use of biocomposite osteoplastic materials. Nizhny Novgorod Medical Journal. Supplement to NMG (dentistry 2003). 2003;(2):244-50. (In Russ.)
  • Kuz'minykh IA. Clinical experience in osteoplastic material Allomatrix-implant and fibrin rich platelets use in surgical treatment of jaw radicular cysts. Stomatologiia (Mosk). 2009;88(1):51-53. (In Russ.)
  • Ivanov SY, Kuznetsov RK, Chailakhyan RK. Prospects for the use of Biomatrix and Allomatrix-implant materials in combination with bone marrow osteogenic progenitor cells in dentistry. Clinical implantology and dentistry. 2000;(3-4):17-18. (In Russ.)
  • Grudyanov AI, Panasuk AF, Larionov EV, Biakova SF. The use of biocomposite osteoplastic material "Allomatrix-implant" in the surgical treatment of inflammatory periodontal diseases. Periodontology. 2003;4(29):39-43. (In Russ.)
  • Litvinov SD, Rakhimov RI. [Tooth bud fixation by the material LitAr]. Stomatologiia (Mosk). 2005;84(2):62-65. (In Russ.)
  • Asnina SA, Agapov VS, Savchenko ZI, Ignatiev EV. The use of biocomposite material "Osteomatrix" for the prevention of complications in the removal of impacted third molars. Institute of Dentistry. 2004;(1):46-49. (In Russ.)
  • Chekmazov IA, Riabov AL, Skalozub OI, Lapin RV. [Biocomposite nanostructured materials for the bone defects filling by osteomyelitis]. Khirurgiia (Mosk). 2013;(8):56-8. (In Russ.)
  • Protsenko AI, Gazhev AKh, Gordeev GG, Zheltikov DI. [The use of hydroxyapatite substance for the ostheosynthesis after comminuted thigh fractures]. Khirurgiia (Mosk). 2012;(1):10-4. (In Russ.)
  • Roberts SJ, Geris L, Kerckhofs G, et al. The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials. 2011;32(19):4393-4405. doi: 10.1016/j.biomaterials.2011.02.047
  • Furukawa T, Matsusue Y, Yasunaga T, et al. Bone bonding ability of a new biodegradable composite for internal fixation of bone fractures. Clin Orthop Relat Res. 2000;(379):247-58. doi: 10.1097/00003086-200010000-00030
  • Shikinami Y, Matsusue Y, Nakamura T. The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly l-lactide (F-u-HA/PLLA). Biomaterials. 2005;26(27):5542-51. doi: 10.1016/j.biomaterials.2005.02.016
  • Popkov AV, Stogov MV, Gorbach EN, et al. Hydrolysis of Bone-Replacing Materials Based on Polylactic Acid and Containing Hydroxyapatite in an In Vitro Experiment. Bull Exp Biol Med. 2022;174(1):99-103. doi: 10.1007/s10517-022-05656-3
  • Popkov AV, Popkov DA, Kononovich NA et al. Bioactive implants in the treatment of long bone nonunion and defects. Tomsk: Publishing House of Tomsk Polytechnic University; 2021:312.
Еще
Статья обзорная