Biodegradable polymer materials and modifying additives: state of the art. Part III

Автор: Mazitova A.K., Aminova G.K.,Buylova E.A., Zaripov I.I., Vikhareva I.N.

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Development of new polymer materials

Статья в выпуске: 2 Vol.13, 2021 года.

Бесплатный доступ

One of the most demanded materials on the planet is plastic, the excellent performance of which contributes to the accumulationof a significant amount of waste on its basis. In this regard, a new approach to the development of these materials hasbeen formed in scientific circles: the production of polymer composites with constant performance characteristics for a certainperiod and then capable of destruction under the influence of environmental factors. Analysis of the current state of the industry of polymeric materials shows that the most urgent is the use of such classical polymers as polyolefins and polyvinyl chloride. First of all, the optimal solution to this problem due to the lack of a suitable replacement for traditional polymers is the development of composites based on them with the use of biodegradable additives. In this case, a set of problems associated with waste disposal issolved: the decomposition period of the recycled waste is significantly reduced, the territories required for plastic waste are reduced. The paper outlines the preconditions for the emergence and further development of the field of biodegradable polymers. The mainquantitative characteristics of the production capacities of manufactured bioplastics by types, regions and industries of applicationare given. Modern methods of reducing and regulating the degradation time of polymer materials are presented. The main global and domestic manufacturers of biodegradable polymers and their products are listed, as well as a list of the main manufacturers of biodegradable additives for polymeric materials. Modern types of bioplastics based on renewable raw materials, composites with their use, aswell as modified materials from natural and synthetic polymers are listed. The main methods for determining the biodegradability of existing bioplastics are described.

Еще

Biodegradation, biodegradable additives, petrochemical raw materials, polymers, plasticizers, plant sources

Короткий адрес: https://sciup.org/142226916

IDR: 142226916   |   DOI: 10.15828/2075-8545-2021-13-2-73-78

Список литературы Biodegradable polymer materials and modifying additives: state of the art. Part III

  • Yu L., Dean K., Li L. Polymer blends and composites from renewable resources.Progress in Polymer Science. 2006; 3: 576–602.
  • Klinkov A.S. Utilization of polymer containers and packaging: textbook. Tambov: TSTU; 2008.
  • Jimenez A., Fabra M.J., Talens P. et al. Edible and Biodegradable Starch membranes: A Review.Food Bioprocess Technol. 2012; 5: 2058–2076. Available from: doi: 10.1007/s11947-012-0835-4.
  • Legonkova O.A. Packaging materials made of biodegradable materials based on polylactide and starch.Food industry. 2009; 6: 12–13.
  • Rybkina S.P. Biodegradable packaging materials based on polysaccharides (starch). Plastic mass. 2012; 2: 61–64.
  • Arifa S., Arifa T., Adeel M., Amtul Bari T. Abdullah Y., Pugazhendhi A. A review on environmental significance carbon foot prints of starch based bio-plastic: A substitute of conventional plastics.Biocatalysis and Agricultural Biotechnology. 2020; 2. Available from: doi: 10.1016/j.bcab.2020.101540.
  • Ermolovich O.A. Influence of compatibilizer additives on technological and operational characteristics of biodegradable materials based on starch-filled polyethylene. Journal of Applied Chemistry. 2006; 79(9): 1542–1547.
  • Vinidiktova N.S. Environmentally friendly oriented films based on polypropylene.Materials. Technology. Instruments. 2008; 13(4): 14–19.
  • Dauenhauer P., Krumm C., Pfaendtner J. Millisecond Pulsed Films Unify the Mechanisms of Cellulose Fragmentation. Chemistry of Materials: journal. 2016; 28(1): 0001. Available from: doi: 10.1021/acs.chemmater.6b00580.
  • Garaeva M.R. , Gotlib E.M., Nikitina N.N., Kostochko A.V.Effect of plasticizers on the crystal structure of cellulose acetates. Plastic masses. 2007; 3: 51–52.
  • Rogovin Z.A. Chemical transformations and modification of cellulose.Moscow: Himiya;1979.
  • Belokurova A.P. Diffusion and dissolution of water vapor in plasticized cellulose acetates.Plastic mass. 2007; 8: 24–26.
  • Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture.Current Biology. 2009;19: 169–175. Available from: doi:10.1016/j.cub.2008.12.031.
  • Varlamov V.P., Ilyina A.V., Shagdarova B.T., Lunkov A.P., Mysyakina I.S. Chitin / chitosan and it’s derivatives: fundamental and applied aspects.Advances in biological chemistry. 2020; 60: 317–368.
  • Shamshina J.L., Kelly A., Oldham T. et al. Agricultural uses of chitin polymers. Environ Chem Lett. 2020; 18: 53–60. Available from: doi: 10.1007/s10311-019-00934-5.
  • Barikani M., Oliaei E., Seddiqi H., Honarkar H. Preparation and application of chitin and its derivatives: a review. Iran Polym J. 2014; 23: 307–326. Available from: doi: 10.1007/s13726-014-0225-z.
  • Cho Y.I., No H.K., Meyers S.P. Physico-chemical characteristics and functional properties of various commercial chitin and chitosan products. J. Agric Food Chem. 1998; 46: 3839–3843. Available from: doi: 10.1021/jf971047f.
  • Klemm D. Cellulose. In: Biopolymers. Polysaccharides II: polysaccharides from eukaryotes. Weinheim:Wiley-VCH; 2005. 275–287 p.
  • Leuba J.L., Stossel P. Chitosan and other polyamines: antifungal activity and interaction with biological membranes. In: Muzzarelli R., Jeuniaux C., Gooday G.W. (eds) Chitin in nature and technology. Springer: Boston; 1986. 215–222 р.
  • Danilevsky A.Ya. Biological and chemical reports on protein substances (materials for their chemical constitution and biogenesis).Physiological collection. 1988; 1: 289.
  • Pain R.H. Mechanisms of Protein Folding. 2nd Edition, New York: Oxford University Press; 2000.
  • Rabotyagova O.S., Cebe P., Kaplan D. Protein-Based Block Copolymers. Biomacromolecules. 2011; 269–289. Available from: doi: 10.1021/bm100928x.
  • Antipov E.M. et al. Highly oriented fibers of biodegradable polyhydroxyalkanoates.Ecology and Industry of Russia. 2010; 5: 30–36.
  • Andreeva T.I. et al. Isolation and purification of biodegradable polyhydroxybutyrate for medical products. Ecology and Industry of Russia. 2010; 5: 72–77.
  • Hatti-Kaul R., Nilsson L., Zhang B., Rehnberg N., Lundmark S. Designing Biobased Recyclable Polymers for Plastics.Trends in biotechnology. 2020; 38(1): 50–67. Available from: doi: 10.1016/j.tibtech.2019.04.011.
  • Koller M. Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): the biotechnological escape route of choice out of the plastic predicament? The EuroBiotech Journal. 2019; 3(1): 32–44. Available from: doi: 10.2478/ebtj-2019-0004.
  • Vu D.H., Akesson D., Taherzadeh M.J., Ferreira J.A. Recycling strategies for polyhydroxyalkanoate-based waste materials: An overview. Bioresource Technology.2020; 298. Available from: doi: 10.1016/j.biortech.2019.122393.
  • Encyclopedia of Polymer Sceince and Technology. John Wiley & Sons, Inc., 2005.
  • Chen G. Plastics derived from biological sources: Present and future: P technical and environmental review. Chemical Reviews. 2012; 112(4): 2082–2099. Available from: doi: 10.1021/cr200162d.
  • Mishra S.B., Mishra A.K., Kaushik N.K., Khan M.A. Study of performance properties of lignin-based polyblends with polyvinyl chloride.Journal of Materials Processing Technology. 2007; 183(2-3): 273–276. Available from: doi: 10.1016/j.jmatprotec.2006.10.016.
  • Olekhnovich R.O., Sitnikova V.E., Chereneva S.V., Volkova K.V. Belukhichev E.V. Study of the kinetics of thermal degradation of polymer composites based on polyvinylchloride film and biopolymer filler. In: International Multidisciplinary Scientific GeoConference: SGEM, Sofia, 2018; 18(4.1). Available from: doi: 10.5593/sgem2018/4.1/S17.084.
  • Piergiovanni L., Limbo S. Plastic Packaging Materials.In: Food Packaging Materials. Springer Briefs in Molecular Science. Springer, Cham. 2020. Available from: doi: 10.1007/978-3-319-24732-8_5.
  • Lirovа B.I. Influence of the nature of plasticizers on the properties of a film material based on PVC. Applied Chemistry. 2007; 77(10): 1707–1713.
  • Lirovа B.I. Study of the process of migration from plasticized compositions based on PVC. Applied chemistry. 2006; 79(6): 1018–1027.
  • Vikhareva I.N., Builova E.A., Gatiyatullina D.R., Arslanov V.R., Gilemyanov D.A., Mazitova A.K. Synthesis and properties of esters of adipic acid. Bashkir chemical journal. 2019; 26(2): 33–36.
  • Mazitova A.K., Vikhareva I.N., Aminova G.K., Savicheva Ju.N., Gareeva N.B., Shaikhullin I.R. The influence of nanoadditives in the synthesis of eco-friendly polyester plasticizers. Nanotechnologies in Construction. 2020; 12(1): 21–26. Available from: doi: 10.15828/2075-8545-2020-12-1-21-26.
  • Mazitova A.K., Vikhareva I.N., Maskova A.R., Gareeva N.B., Shaikhullin I.R. The effect of additives on the biodegradation of PVC materials.Nanotechnologies in Construction. 2020; 12(2): 94–99. Available from: doi: 10.15828/2075-8545-2020-12-2-94-99.
  • Mazitova A.K., Vikhareva I.N., Aminova G.K., Savicheva Yu.N. Application of Zinc Oxide to Obtain and
  • Modify Properties of Adipate Plasticizer of Polyvinyl Chloride.Polymers. 2020; 12(8): 1728.
  • Berruezo M., Luduena L.N., Rodriguez E., Alvarez V.A. Preparation and characterization of polystyrene / starch blends for packaging applications.Journal of plastic films and sheeting. 2015; 30(2): 141–161.
  • Pushpadass H.A., Weber R.W., Dumais J.J. Biodegradation characteristics of starch – polystyrene loose-fill foams in a composting medium. Bioresource technology. 2010; 101(19): 7258–7264.
  • Utracki L.A., Shi G.Z., Rodrigue D., Gonzalez-Nunez R. Compounding Polymer Blends, Polymer Blends Handbook. 2014. p. 919–1028. Available from: doi: 10.1007/978-94-007-6064-6.
  • Favis B.D. Polymer alloys and blends: Recent advances.The Canadian Journal of Chemical Engineering. 2009; 619–625. Available from: doi: 10.1002/cjce.5450690303.
  • Okamoto M., Inoue T. Reactive processing of polymer blends: Analysis of the change in morphological and interfacial parameters with processing. Polymer Engineering & Science. 2004; 175–182. Available from: doi: 10.1002/pen.760330308.
  • Inoue T. Morphology of Polymer Blends, Polymer Blends Handbook. 2003. p. 547–576. Available from: doi: 10.1007/0-306-48244-4.
  • Brown S.B. Reactive Compatibilization of Polymer Blends, Polymer Blends Handbook. 2003. p. 339–415. Available from: doi: 10.1007/0-306-48244-4.
  • Wang R., Wang W. Synergistic effect of dual rubber system in toughening styrene maleic anhydride copolymers.Journal of Applied Polymer Science. 2003; 2260–2267. Available from: doi: 10.1002/app.12896.
  • Yang Li-Ying, Bigio D., Smith T.G., Melt blending of linear low-density polyethylene and polystyrene in a Haake internal mixer. II. Morphology-processing relationships. Journal of Applied Polymer Science. 2003; 129–141. Available from: doi: 10.1002/app.1995.070580114.
  • Maharanaa T., Mohantyb B., Negi Y.S. Melt-solid polycondensation of lactic acid and its biodegradability // Progress in Polymer Science. 2008, V. 34: 99–124 p.
  • Garlotta D. A literature review of poly (lactic acid). J. Polym Environ. 2001: 63–84.
  • Kamluk A.N., Likhamanau A.O. Experimental determination of the rational geometrical parameters of the sprinkler frame arms and deflector on the expansion rate and stability of foam. In: Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series. 2019; 64(1): 60–68. Available from: doi: 10.29235/1561-8358-2019-64-1-60-68.
  • Belov D. Biodegradable polymer polylactide. Science and innovations. 2013; 9: 21–23.
  • Fomin V.A. State and development directions of work on obtaining biodegradable polymers from lactic acid. Plastic mass. 2012; 3: 56–64.
  • Ayyoob M., Lee S., Kim Y.J. Well-defined high molecular weight polyglycolide-b-poly (L-) lactide-bpolyglycolide triblock copolymers: synthesis, characterization and microstructural analysis. J. Polym Res. 2020; 27:
  • Available from: doi: 10.1007/s10965-019-2001-4.
  • Cameron R.E., Kamvari M. A Synthetic bioresorbable polymers. In: Durability and reliability of medical polymer. Woodhead Publishing; 2020. p. 96–118.
  • Dobrzynski P., Kasperczyk J., Janeczek H., Bero M. Synthesis of biodegradable glycolide/l-lactide copolymers using iron compounds as initiators. Polymer (Guildf). 2002; 43: 2595–2601. Available from: doi: 10.1016/S0032-3861(02)00079-4.
  • Gorrasi G., Meduri A., Rizzarelli P. et al. Preparation of poly(glycolide-co-lactide)s through a green process: analysis of structural, thermal, and barrier properties. React &Funct Polym. 2016; 109: 70–78. Available from: doi: 10.1016/j.reactfunctpolym.2016.10.002.
  • Ramdhanie L.I., Aubuchon S.R., Boland E.D. et al. Thermal and mechanical characterization of electrospun blends of poly (lactic acid) and poly (glycolic acid). Polym J. 2006; 38: 1137–1145. Available from: doi: 10.1295/polymj.PJ2006062.
Еще
Статья научная