Brain mechanisms of embodied decision-making
Автор: Yuri Aleksandrov Iosifovich, Olga E. Svarnik, Andrei V. Rozhdestvin, Yuri V. Grinchenko
Журнал: International Journal of Cognitive Research in Science, Engineering and Education @ijcrsee
Рубрика: Original research
Статья в выпуске: 2 vol.10, 2022 года.
Бесплатный доступ
One of the ways to comprehend mental abilities of individuals is to examine their underlying neural processes and mechanisms. To explore the role of cingulate cortical neurons in “mental rehearsal“ immediately before every trial of appetitive instrumental task in well-trained animals, we analyzed recorded single-unit activity in relation to the task-relevant events during task trials and during delay periods inside each trial in the same animals. The results showed that neuronal activity in the rabbit posterior cingulate cortex during the delay consisted mostly of activity of those neurons which were specialized in relation to this task, though the delay periods were not intended to remember previous events. The data indicated that these neuronal groups are involved in the processes of unfolding planned future behavior. Sequences of neuronal events during the delay period (i.e. during” covert behavior” phase), used for decision making, depended on the role of neuron in overt behavior. During delay periods replays (or preplays) started with activity of very selective (“narrow selective”) neurons, specialized in relation to concrete behavioral acts, but late in the delay included activity of such “broadly selective” neurons which might have been related to movements similar in broad categories of behavior. Such results indicate that task-related neurons with different degree of selectivity are all involved in overt and covert phase of experience actualization, which might imply that decision making in rabbits is the embodied cognitive process.
Mental rehearsal, embodied cognition, posterior cingulate cortex, rabbit, decision making
Короткий адрес: https://sciup.org/170198662
IDR: 170198662 | DOI: 10.23947/2334-8496-2022-10-2-163-171
Список литературы Brain mechanisms of embodied decision-making
- Alexandrov, Y. I. (2008). How we fragment the world: the view from inside versus the view from outside. Social Science Information, 47(3), 419–457. https://doi.org/10.1177/0539018408092580
- Alexandrov, Y. I. (2022). “Chapter 3 Systemic Psychophysiology”. In: Forsythe C. (ed.). Russian Cognitive Neuroscience: Historical and Cultural Context. Leiden, The Netherlands: Brill. P. 56-86. https://doi.org/10.1163/9789004505667_004
- Alexandrov, Y. I., Grinchenko, Y. V., & Jarvilehto, T. (1990). Change in the pattern of behavioural specialization of neurons in the motor cortex of the rabbit following lesion of the visual cortex. Acta physiologica scandinavica, 139(1-2), 371-385. https://doi.org/10.1111/j.1748-1716.1990.tb08936.x
- Alexandrov, Y. I., Sozinov, A. A., Svarnik, O. E., Gorkin, A. G., Kuzina, E. A., & Gavrilov, V. V. (2018). Neuronal bases of systemic organization of behavior. In Systems Neuroscience (pp. 1-33). Springer, Cham. https://doi.org/10.1007/978- 3-319-94593-4_1
- Alexandrov, Yu.I., Grechenko, T.N., Gavrilov, V.V., Gorkin, A.G., Shevchenko, D.G., Grinchenko, Y.V., et al. (2000). Formation and realization of individual experience in humans and animals: a psychophysiological approach. In: R. Miller, A.M. Ivanitsky & P.M. Balaban (eds) Conceptual Advances in Brain Research, Complex Brain Functions Conceptual Advances in Russian Neuroscience, Vol. 2, pp. 181-200. Amsterdam: Harwood Academic Publishers.
- Andersen, R. A., & Cui, H. (2009). Intention, action planning, and decision making in parietal-frontal circuits. Neuron, 63(5), 568-583. https://doi.org/10.1016/j.neuron.2009.08.028
- Anokhin, P. K. (1974). Biology and Neurophysiology of Conditioned Reflex and Its Role in Adaptive Behavior, 1st ed. Oxford: Pergamon Press.
- Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. D. (1996). Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science, 273(5283), 1868-1871. https://doi.org/10.1126/science.273.5283.1868
- Bar, M. (2009). The proactive brain: memory for predictions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 1235-1243. https://doi.org/10.1098/rstb.2008.0310
- Berkes, P., Orbán, G., Lengyel, M., & Fiser, J. (2011). Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science, 331(6013), 83-87. https://doi.org/10.1126/science.1195870
- Bisley, J. W., Zaksas, D., Droll, J. A., & Pasternak, T. (2004). Activity of neurons in cortical area MT during a memory for motion task. Journal of neurophysiology, 91(1), 286-300. https://doi.org/10.1152/jn.00870.2003
- Buzsaki G. (2019). The Brain from Inside Out. New York: Oxford University Press.
- Catanese, J., Cerasti, E., Zugaro, M., Viggiano, A., & Wiener, S. I. (2012). Dynamics of decision-related activity in hippocampus. Hippocampus, 22(9), 1901-1911. https://doi.org/10.1002/hipo.22025
- Changeux, J. P., & Dehaene, S. (1989). Neuronal models of cognitive functions. Cognition, 33(1-2), 63-109. https://doi. org/10.1016/0010-0277(89)90006-1
- Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I., & Shenoy, K. V. (2010). Cortical preparatory activity: representation of movement or first cog in a dynamical machine?. Neuron, 68(3), 387-400. https://doi.org/10.1016/j. neuron.2010.09.015
- Cisek, P., & Kalaska, J. F. (2004). Neural correlates of mental rehearsal in dorsal premotor cortex. Nature, 431(7011), 993-996. https://doi.org/10.1038/nature03005
- Clement, D. (1996). Kinds of Minds: Toward an Understanding of Consciousness. Basic Books.
- Contreras, E. J. B., Schjetnan, A. G. P., Muhammad, A., Bartho, P., McNaughton, B. L., Kolb, B., ... & Luczak, A. (2013). Formation and reverberation of sequential neural activity patterns evoked by sensory stimulation are enhanced during cortical desynchronization. Neuron, 79(3), 555-566. https://doi.org/10.1016/j.neuron.2013.06.013
- Cossart, R. (2014). Operational hub cells: a morpho-physiologically diverse class of GABAergic neurons united by a common function. Current opinion in neurobiology, 26, 51-56. https://doi.org/10.1016/j.conb.2013.12.002
- Crammond, D. J., & Kalaska, J. F. (2000). Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. Journal of neurophysiology, 84(2), 986-1005. https://doi.org/10.1152/jn.2000.84.2.986
- Dehaene, S., & Changeux, J. P. (1997). A hierarchical neuronal network for planning behavior. Proceedings of the National Academy of Sciences, 94(24), 13293-13298. https://doi.org/10.1073/pnas.94.24.13293
- Dennet, D.C. (1996). Kinds of minds: Toward an understanding of consciousness. New York: Harper Collins Publishers.
- Ferster, D. (1996). Is neural noise just a nuisance?. Science, 273(5283), 1812-1812. https://doi.org/10.1126/ science.273.5283.1812
- Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680-683. https://doi.org/10.1038/nature04587
- Freedman, D. J., & Assad, J. A. (2011). A proposed common neural mechanism for categorization and perceptual decisions. Nature neuroscience, 14(2), 143-146. https://doi.org/10.1038/nn.2740
- Gallese, V., & Lakoff, G. (2005). The brain’s concepts: the role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455-479. https://doi.org/10.1080/02643290442000310
- Gheidi, A., Satvat, E., & Marrone, D. F. (2012). Experience-dependent recruitment of Arc expression in multiple systems during rest. Journal of Neuroscience Research, 90(9), 1820-1829. https://doi.org/10.1002/jnr.23057
- Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual review of neuroscience, 30(1), 535-574. https://doi.org/10.1146/annurev.neuro.29.051605.113038
- Gorkin, A. G., & Shevchenko, D. G. (1991). Stability of the behavioral specialization of neurons. Neuroscience and behavioral physiology, 21(3), 222-229. https://doi.org/10.1007/BF01191659
- Ingram, T. G., Kraeutner, S. N., Solomon, J. P., Westwood, D. A., & Boe, S. G. (2016). Skill acquisition via motor imagery relies on both motor and perceptual learning. Behavioral Neuroscience, 130(2), 252. https://doi.org/10.1037/bne0000126
- Kim, K., Ladenbauer, J., Babo-Rebelo, M., Buot, A., Lehongre, K., Adam, C., ... & Tallon-Baudry, C. (2019). Resting-state neural firing rate is linked to cardiac-cycle duration in the human cingulate and parahippocampal cortices. Journal of Neuroscience, 39(19), 3676-3686. https://doi.org/10.1523/JNEUROSCI.2291-18.2019
- MacDonald, C. J., Carrow, S., Place, R., & Eichenbaum, H. (2013). Distinct hippocampal time cell sequences represent odor memories in immobilized rats. Journal of Neuroscience, 33(36), 14607-14616. https://doi.org/10.1523/ JNEUROSCI.1537-13.2013
- Murakami, M., & Mainen, Z. F. (2015). Preparing and selecting actions with neural populations: toward cortical circuit mechanisms. Current opinion in neurobiology, 33, 40-46. https://doi.org/10.1016/j.conb.2015.01.005
- Narayanan, N. S., & Laubach, M. (2009). Delay activity in rodent frontal cortex during a simple reaction time task. Journal of neurophysiology, 101(6), 2859-2871. https://doi.org/10.1152/jn.90615.2008
- O’Neill, J., Pleydell-Bouverie, B., Dupret, D., & Csicsvari, J. (2010). Play it again: reactivation of waking experience and memory. Trends in neurosciences, 33(5), 220-229. https://doi.org/10.1016/j.tins.2010.01.006
- Park, I. M., Meister, M. L., Huk, A. C., & Pillow, J. W. (2014). Encoding and decoding in parietal cortex during sensorimotor decision-making. Nature neuroscience, 17(10), 1395-1403. https://doi.org/10.1038/nn.3800
- Rushworth, M. F. S., Walton, M. E., Kennerley, S. W., & Bannerman, D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends in cognitive sciences, 8(9), 410-417. https://doi.org/10.1016/j.tics.2004.07.009
- Sauvage, C., De Greef, N., Manto, M., Jissendi, P., Nioche, C., & Habas, C. (2015). Reorganization of large-scale cognitive networks during automation of imagination of a complex sequential movement. Journal of neuroradiology, 42(2), 115- 125. https://doi.org/10.1016/j.neurad.2014.04.001
- Schurger, A., Pak, J., & Roskies, A. L. (2021). What is the readiness potential?. Trends in cognitive sciences, 25(7), 558-570. https://doi.org/10.1016/j.tics.2021.04.001
- Shvyrkov, V. B. (1986). Behavioral specialization of neurons and the system-selection hypothesis of learning. In: F. Klix & H. Hagendorf (eds) Human Memory and Cognitive Capabilities, pp. 599-611. Amsterdam: Elsevier.
- Singer, A. C., Carr, M. F., Karlsson, M. P., & Frank, L. M. (2013). Hippocampal SWR activity predicts correct decisions during the initial learning of an alternation task. Neuron, 77(6), 1163-1173. https://doi.org/10.1016/j.neuron.2013.01.027
- Sozinov, A. A., Bakhchinaa, A. V., & Alexandrov, Y. I. (2021). The Way of Learning Preserved in The Structure of Individual Experience Shapes Task-Switching: Implications for Neuroscience and Education. International Journal of Cognitive Research in Science, Engineering and Education:(IJCRSEE), 9(2), 291-299. https://doi.org/10.23947/2334-8496- 2021-9-2-291-299
- Svarnik, O. E., Alexandrov, Y. I., Gavrilov, V. V., Grinchenko, Y. V., & Anokhin, K. V. (2005). Fos expression and task-related neuronal activity in rat cerebral cortex after instrumental learning. Neuroscience, 136(1), 33-42. https://doi. org/10.1016/j.neuroscience.2005.07.038
- Tervo, D. G., Proskurin, M., Manakov, M., Kabra, M., Vollmer, A., Branson, K., & Karpova, A. Y. (2014). Behavioral variability through stochastic choice and its gating by anterior cingulate cortex. Cell, 159(1), 21-32. https://doi.org/10.1016/j. cell.2014.08.037
- Thura, D., & Cisek, P. (2014). Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making. Neuron, 81(6), 1401-1416. https://doi.org/10.1016/j.neuron.2014.01.031
- Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., & Aertsen, A. M. H. J. (1995). Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature, 373(6514), 515-518. https://doi. org/10.1038/373515a0
- van der Meer, M.A., Redish, A.D. (2010). Expectancies in decision making, reinforcement learning, and ventral striatum. Frontiers in Neuroscience, 15, 6. https://doi.org/10.3389/neuro.01.006.2010
- Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do?. Nature reviews neuroscience, 10(11), 792-802. https://doi.org/10.1038/nrn2733
- Viard, A., Chételat, G., Lebreton, K., Desgranges, B., Landeau, B., de La Sayette, V., ... & Piolino, P. (2011). Mental time travel into the past and the future in healthy aged adults: an fMRI study. Brain and cognition, 75(1), 1-9. 1-9. https://doi. org/10.1016/j.bandc.2010.10.009
- Vogt, B. A. (2016). Cytoarchitecture and neurocytology of rabbit cingulate cortex. Brain Structure and Function, 221(7), 3571- 3589. https://doi.org/10.1007/s00429-015-1120-x
- Walton, M. E., Devlin, J. T., & Rushworth, M. F. (2004). Interactions between decision making and performance monitoring within prefrontal cortex. Nature neuroscience, 7(11), 1259-1265. https://doi.org/10.1038/nn1339
- Whittingstall, K., Bernier, M., Houde, J. C., Fortin, D., & Descoteaux, M. (2014). Structural network underlying visuospatial imagery in humans. Cortex, 56, 85-98. https://doi.org/10.1016/j.cortex.2013.02.004
- Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265(5172), 676-679. https://doi.org/10.1126/science.8036517