Causality in mathematics, physics and process evolution
Автор: Galperin E.A.
Журнал: Вестник Пермского университета. Серия: Математика. Механика. Информатика @vestnik-psu-mmi
Рубрика: Механика. Математическое моделирование
Статья в выпуске: 1 (28), 2015 года.
Бесплатный доступ
All motions and processes in Nature and technology are evolving according to the ever increasing parameter called time. This includes the propagation of fields at finite (possibly variable) velocities. For each time interval of the process, there is a starting state (the cause) and later the current state (the effect or result). This is known as the principle of causality and presents an orderly deterministic or stochastic (under disturbances or in probabilistic description) evolution of a process. The causality in process evolution at finite velocities is conditioned on the physical processes that transmit the action in process evolution, and it is achievable only within some margin of accuracy. Time delays in transmission of actions by physical processes are natural and unavoidable, though in many cases they may be small and not affecting the motion or a process. In this paper, the notion of causality in mathematics, physics and process evolution is presented and discussed, which opens new avenues and perspectives for research and development in mathematics, physics, life sciences, engineering and technology.
Causality, time uncertainty, finite velocities, transmittal of actions
Короткий адрес: https://sciup.org/14729958
IDR: 14729958
Список литературы Causality in mathematics, physics and process evolution
- Albert Einstein, Boris Podolsky, Nathan Rosen. Can quantum-mechanical description of physical reality be considered complete? Physical Review (1935). 777-780.
- E.A. Galperin. Unit-free transformations of linear relativity. Computers & Math, with Applications, 59 (1) (2010) 365-375; doi 10.10.16/j.camwa.2009.07.013.
- D. Molodtsov. Soft set theory -First results. Computers & Mathematics with Applications (CAMWA), Vol. 37, № 4-5. 1999. P. 19-31.
- E.A. Galperin. Information transmittal and time uncertainty, measuring the speed of light and time of reflection, representations of Newton's second law and related problems. Computers & Mathematics with Applications (CAMWA), 56 (5) (2008) 1271-1290; DOI: 10.1016/j.camwa.2008.02.029
- E.A. Galperin. The Isaacs equation for differential games, totally optimal fields of trajectories and related problems. Computers & Mathematics with Applications. Vol.55, № 6. 2008. P. 1333-1362, DOI: 10.1016/j.camwa.2007.05.013
- Albert Einstein. Zur Elektrodynamik der bewegte Korper. Annalen der Physik, 17 (1905). 891-921.
- Albert Einstein. Collected Scientific Papers in Four Volumes. Nauka, Moscow, 1965 (Russian), Vol. 1, Papers on Relativity Theory, years 1905-1920.
- Kurt Gbdel: Collected Works, Vol. 2, Solomon Feferman et al. (Editors), Oxford University Press, New York, 1990.
- Peter Smith. An Introduction to Godel's Theorems. Cambridge University Press 2007.
- E.A. Galperin. Information transmittal, time uncertainty and special relativity. Computers & Mathematics with Applications (CAMWA), 57 (9) (2009) 1554-1573; DOI: 10.1016/j.camwa.2008.09.048
- Ervin Schrodinger. Statistical Thermodynamics. Dover Publ, New York, 1989.
- Isaac Newton. Phylosophiae Naturalis Prin-cipia Mathematica, printed under the auspices of the London Royal Society, London, 1687. English translation: Mathematical Principles of Natural Philosophy, translated by A. Mott in 1729, University of California Press, 1934.
- V.V. Rumyantsev. On the principal laws of classical mechanics. In the book: "General and Applied Mechanics" (Mechanical Engineering and Applied Mechanics, Vol. 1, V.Z. Parton, series Editor). Hemisphere Publishing Corporation, 1991. P. 257-273.
- G. Buquoy. Analitische Bestimmung des Ge-setzes der virtuellen Geschwindigkeiten in mechanischer und statischer Hinsicht. Leipzig, 1812.
- G. Buquoy. Exposition d'un nouveau principe general de dynamique dont le principe de vitesses virtuelles n'est qu'un cas particulier, V. Courcier. Paris, 1815.
- GK. Mikhailov. On the history of variable mass system dynamics. Mechanics of Solids, Vol. 10, № 5, 1975. P. 32-40 (translated from Russian journal "Mekhanika Tverdogo Tela, Izvestia AN USSR". Vol. 10, № 5. 1975. P. 41-51).
- Graf Georg von Buquoy und die Dynamik der Systeme mit veranderlichen Massen. Herausgegeben von Menso Folkerts und Gleb K. Michajlov, unter Mitarbeit von Mar-garete Buquoy, Dr. Erwin Rauner Verlag, Augsburg, 2010. 310 p. 21 Tafeln.
- E.A.Galperin. Left time derivatives in mathematics, mechanics and control of motion. Computers and Mathematics with Applications (CAMWA), Vol. 62, № 12. 2011. P. 4742-4757; oi:10.1016/j.camwa.2011.10.066.
- A.D. Myshkis. Linear Differential Equations with Retarded Argument. Gostekhizdat, Moscow, 1951 (Russian); German transl. Verl. der Wiss., 1955; English translation: Linear Differential Equations with Delayed Argument, Nauka, Moscow, 1972.
- J.K. Hale. Theory of Functional Differential Equations, Springer, 1977.
- I. Gyori and G. Ladas. Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
- R.P.Agarwal, S.R.Grace and D.O’Regan. Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic, Dordrecht, 2000.
- Collected Works of N.V. Azbelev (Chief editors: V.P.Maximov, L.F.Rakhmatullina) ZAO "Prognoz", Moscow-Ijevsk, 2012. 808 p. (Russian).
- E.A.Galperin. Generalized equations of motion for mechanical systems with variable masses and forces depending on higher order derivatives//Bulletin of Perm State University: Mathematics, Mechanics, Information Science, № 2(25). 2014. P. 15-31.
- E.A.Galperin. Validity of feedback controls depending on higher order derivatives. Computers & Mathematics with Applications, Vol. 25, № 10/11. 1993. P. 173-185.
- E.A.Galperin. Dynamical equations with accelerations and higher order derivatives of motion in the right-hand sides are in agreement with Newton’s laws. Nonlinear World, Vol. 4, № 1. 1997. P. 31-42.
- Horace Lamb. Hydrodynamics. Sixth edition, Dover Publications, Mineola, N.Y., 1945 (originally published as "Treatise on the Mathematical Theory of the Motion of Fluids",1879).
- W. Thomson and P.G. Tait. Treatise on Natural Phylosophy. Cambridge, Vol. 1. 1879. Vol. 2. 1883.
- S. Saks. Theory of the Integral. Warsaw, 1939.
- A.F.Filippov. Differential Equations with Discontinuous Right-hand Sides. Kluwer, Dordrecht, The Netherlands, 1988.
- L.A.Pars. Treatise on Analytical Dynamics. Wiley, New York, 1965.
- Handbook of Mathematical Functions (Edited by Milton Abramowitz and Irene A. Stegun), Ninth printing, Dover Publ., Inc., New York, 1972 (Library of Congress Catalog Card # 65-12253)
- E.A.Galperin and N.M.Yanev. Extremal problems on probability distributions. Mathematical and Computer Modelling, 32 (2000). P. 877-886.