Characterizations of finite dimensional Archimedean vector lattices

Автор: Polat Faruk, Toumi Mohamed Ali

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 2 т.20, 2018 года.

Бесплатный доступ

In this paper, we give some necessary and sufficient conditions for an Archimedean vector lattice A to be of finite dimension. In this context, we give three characterizations. The first one contains the relation between the vector lattice A to be of finite dimension and its universal completion Au. The second one shows that the vector lattice A is of finite dimension if and only if one of the following two equivalent conditions holds : (a) every maximal modular algebra ideal in Au is relatively uniformly complete or (b) Orth(A,Au)=Z(A,Au) where Orth(A,Au) and Z(A,Au) denote the vector lattice of all orthomorphisms from A to Au and the sublattice consisting of orthomorphisms π with |π(x)|≤λ|x| (x∈A) for some 0≤λ∈R, respectively. It is well-known that any universally complete vector lattice A is of the form C∞(X) for some Hausdorff extremally disconnected compact topological space X. The point x∈X is called σ- isolated if the intersection of every sequence of neighborhoods of x is a neighborhood of x. The last characterization of finite dimensional Archimedean vector lattices is the following. Let A be a vector lattice and let Au(=C∞(X)) be its universal completion. Then A is of finite dimension if and only if each element of X is σ-isolated. Bresar in \cite{4} raised a question to find new examples of zero product determined algebras. Finally, as an application, we give a positive answer to this question.

Еще

Hyper-archimedean vector lattice, f-algebra, universally complete vector lattice

Короткий адрес: https://sciup.org/143162462

IDR: 143162462   |   DOI: 10.23671/VNC.2018.2.14725

Список литературы Characterizations of finite dimensional Archimedean vector lattices

  • Aliprantis C. D., Burkinshaw O. Positive Operators. London: Acad. Press, 1985.
  • Bernau S. J., Huijsmans C. B. Almost f-algberas and d-algebras//Math. Proc. Cambridge Philos. Soc. 1990. Vol. 107, № 2. P. 287-308.
  • Bresar M. Finite dimensional zero product determined algebras are generated by idempotents//Expo Math. 2016. Vol. 34, № 1. P. 130-143.
  • Buskes G., van Rooij A. Almost f-algebras. Commutativity and the Cauchy-Schwarz inequality//Positivity. 2000. Vol. 4. P. 227-331. DOI: 10.1016/j.exmath.2015.07.002.
  • Ercan Z., Onal S. Some Observations on Riesz Algebras//Positivity. 2006. Vol. 10. P. 731-736.
  • Huijsmans C. B. Some analogies between commutative rings, Riesz spaces and distributive lattices with smallest element//Nederl. Akad. Wet., Proc., Ser. A77. 1974. Vol 36. P. 132-147 DOI: 10.1007/s11117-006-0047-0
  • Huijsmans C. B. Lattice-ordered division algebras//Proc. R. Ir. Acad. 1992. Vol. 92A, № 2. P. 239-241.
  • Nouki N., Toumi M. A. Derivations on universally complete f-algebras//Indag. Math. 2015. Vol. 26(1). P. 1-18.
  • Luxemburg W. A. J., Moore L. C. Archimedean quotient Riesz spaces//Duke. Math. J. 1967. Vol. 34. P. 725-739 DOI: 10.1016/j.indag.2014.03.001
  • Luxemburg W. A. J., Zaanen A. C. Vector lattices. I. Amsterdam: North-Holland, 1971.
  • Marinacci M., Montrucchio L. On concavity and supermodularity//J. Math. Anal. Appl. 2008. Vol. 344. P. 642-654.
  • De Pagter B. f-algebras and orthomorphisms. Ph.D. Thesis. Leiden: Leiden Univ., 1981 DOI: 10.1016/j.jmaa.2008.03.009
  • Rickart C. E. General theory of algebras. Princeton: Van Nostrand, 1960.
  • Toumi M. A. Characterization of hyper-Archimedean vector lattices via disjointness preserving bilinear maps//Algebra Univers. 2012. Vol. 67, № 1. P. 29-42.
  • Toumi M. A. When orthomorphisms are in the ideal center//Positivity. 2014. Vol. 18(3). P. 579-583 DOI: 10.1007/s00012-012-0166-3
  • Toumi M. A. A relationship between the space of orthomorphisms and the centre of a vector lattice revisited//Positivity. 2016. Vol. 20, № 2. P. 337-342 DOI: 10.1007/s11117-013-0263-3
  • Uyar A. On Banach lattice algebras//Turkish J. Math. 2005. Vol. 29(3). P. 287-290 DOI: 10.1007/s11117-015-0358-0
Еще
Статья научная