CN-edge domination in graphs

Автор: Alwardi Saleh Anwar, Soner Nandappa D.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 2 т.15, 2013 года.

Бесплатный доступ

Let $G=(V,E)$ be a graph. A subset $D$ of $V$ is called common neighbourhood dominating set (CN-do\-mi\-nating set) if for every $v\in V-D$ there exists a vertex $u\in D$ such that $uv\in E(G)$ and $|\Gamma(u,v)|\geq1$, where $|\Gamma(u,v)|$ is the number of common neighbourhood between the vertices $u$ and $v$. The minimum cardinality of such CN-dominating set denoted by $\gamma_{cn}(G)$ and is called common neighbourhood domination number (CN-edge domination) of $G$. In this paper we introduce the concept of common neighbourhood edge domination (CN-edge domination) and common neighbourhood edge domatic number (CN-edge domatic number) in a graph, exact values for some standard graphs, bounds and some interesting results are established.

Еще

Common neighbourhood edge dominating set, common neighbourhood, edge domatic number, common neighbourhood edge domination number

Короткий адрес: https://sciup.org/14318417

IDR: 14318417

Список литературы CN-edge domination in graphs

  • Alwardi A., Soner N.D., Ebadi K. On the Common neighbourhood domination number//J. of Computer and Math. Sciences.-2011.-Vol. 2, \No 3.-P. 547-556.
  • Bondy J., Murthy U. Graph Theory with Applications.-New York: North Holland, 1976.
  • Dharmalingam K. D. Studies in graph theorey-equitable domination and bottleneck domination//Ph. D. Thesis.-2006.
  • Godsil C., Royle G. Algebraic Graph Theory.-New York: Springer-Verlag, 2001.-(Ser. Graduate Texts in Math. Vol. 207).
  • Harary F. Graph Theory.-Boston: Addison-Wesley, 1969.
  • Haynes T. W., Hedetniemi S. T., Slater P. J. Fundamentals of Domination in Graphs.-New York: Marcel Dekker, Inc. 1998.
  • Jayaram S. R. Line domination in graphs//Graphs Combin.-1987.-Vol. 3.-P. 357-363.
  • Mitchell S., Hedetniemi S. T. Edge domination in trees//Congr. Numer.-1977.-Vol. 19.-P. 489-509.
  • Sampathkumar E., Neeralagi P. S. The neighborhood number of a graph//Indian J. Pure and Appl. Math.-1985.-Vol. 16, \No 2.-P. 126-132.
  • Walikar H. B., Acharya B. D., Sampathkumar E. Recent Developments in the Theory of Domination in Graphs and Its Applications.-Alahabad: Mehta Research instutute, 1979.-241 p.-(MRI Lecture Notes in Math, Vol. 1).
  • Haynes T. W., Hedetniemi S. T., Slater P. J. Fundamentals of Domination in Graphs.-New York: Marcel Dekker, Inc., 1998.
  • Hedetneimi S. M., Hedetneimi S. T., Laskar R. C., Markus L., Slater P. J. Disjoint dominating sets in graphs//Proc. Int. Conf. on Disc. Math.-Bangalore: IMI-IISc, 2006.-P. 88-101.
  • Kulli V. R., Sigarkanti S. C. Further results on the neighborhood number of a graph//Indian J. Pure and Appl. Math.-1992.-Vol. 23, \No 8.-P. 575-577.
  • Sampathkumar E., Neeralagi P. S. The neighborhood number of a graph//Indian J. Pure and Appl. Math.-1985.-Vol. 16, \No 2.-P. 126-132.
Еще
Статья научная