Comparative evaluation of biometrical and biochemical characteristics of three Rumex representatives: Rumex acetosa L., Rumex sanguineus L. and Rumex confertus Willd

Автор: Kharchenko V.A., Golubkina N.A., Bogachuk M.N.

Журнал: Овощи России @vegetables

Рубрика: Садоводство, овощеводство, виноградарство и лекарственные культуры

Статья в выпуске: 6 (74), 2023 года.

Бесплатный доступ

Increase in green vegetables popularity in nutrition and medicine promotes investigations of new cultivar and hybrid biochemical parameters. Nutritional value and antioxidant status of three Rumex representatives: Rumex acetosa L. (Krupnolistny cv.), Rumex sanguineus L. (prospect genotype) and Rumex confertus Willd. were studied. Antioxidant defense parameters (total antioxidant activity, polyphenol and ascorbic acid content) decreased in accordance to: Rumex sanguineus L. > Rumes confertus Willd. > Rumex acetosa L. Thus the ascorbic acid content in bloody dock (R. sanguineus) reached 129 mg/100 g which was 1.48 times higher than in Russian dock (R. confertus) and 3.17 times higher than in garden sorrel (R. acetosa). The total chlorophyll content was also the highest in bloody dock (17.74 mg/g d.w.) compared to 15.88 mg/g in R. confertus and 13.07 mg/g in R. acetosa leaves. The new R. sanguineus genotype was characterized by high decorative properties and demonstrated twice higher oxalic acid content compared to R. acetosa, Krupnolistny cv., and 1.5 times higher value than in R. confertus. High decorative and medicinal value of R. sanguineus was connected to a great extent with the intensive anthocyanin accumulation reaching 7.2% and high nitrate content. The results of the present study indicate high prospects of R. sanguineus genotype utilization in landscape design, food industry and medicine.


Rumex acetosa l, rumex sanguineus l, rumex confertus willd, antioxidant status oxalic acid, nitrates

Короткий адрес:

IDR: 140303347   |   DOI: 10.18619/2072-9146-2023-6-47-51

Список литературы Comparative evaluation of biometrical and biochemical characteristics of three Rumex representatives: Rumex acetosa L., Rumex sanguineus L. and Rumex confertus Willd

  • Yu X.Y., Tan X.H., Cai W. Survey on Polygonaceae Herb Resources of in Zhejiang Tiantong National Forest Park. Medicinal Plants. 2011;2(3):22-24.
  • Bensky D., Gamble A. An Encyclopedia of Traditional Chinese Medicinal Substances (Zhong Yao Da Ci Dian),” Eastland Press, Seattle, 1986.
  • Bello O.M., Fasinu P.S., Bello O.E., Ogbesejana A.B., Adetunji C.O., Dada A.O., Ibitoye O.S., Aloko S., Oguntoye O.S. Wild vegetable Rumex acetosa Linn.: Its ethnobotany, pharmacology and phytochemistry – A review. South Afr. J. Bot. 2019;(125):149-160.
  • Korpelainen H., Pietiläinen M. Sorrel (Rumex acetosa L.): Not Only a Weed but a Promising Vegetable and Medicinal Plant. Bot. Rev. 2020;(86):234–246.
  • Feduraev P., Skrypnik L., Nebreeva S., Dzhobadze G., Vatagina A., Kalinina E., Pungin A., Maslennikov P., Riabova A., Krol O. Variability of Phenolic Compound Accumulation and Antioxidant Activity in Wild Plants of Some Rumex Species (Polygonaceae). Antioxidants. 2022;(11):311.
  • Kuceková Z., Mlček J., Humpolíček P., Rop O., Valasek P., Saha P. Phenolic Compounds from Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and their Antiproliferative Effects. Molecules. 2011;16 (11):9207-9217. doi:10.3390/molecules16119207.
  • Gescher K., Hensel A., Hafezi W., Derksen A., Kühn J. Oligomeric Proanthocyanidins from Rumex acetosa L. Inhibit the Attachment of Herpes Simplex Virus Type-1. Antiviral Research. 2011;89(1):9-18. doi:10.1016/j.antiviral.2010.10.007.
  • Li J.J., Li Y.X., Li N., Zhu H.T., Wang D., Zhang Y.J. The genus Rumex (Polygonaceae): an ethnobotanical, phytochemical and pharmacological review. Nat Prod Bioprospect. 2022;12(1):21. doi: 10.1007/s13659-022-00346-z.
  • GOST 31640-2012 Methods of dry matter content determination in plants (in Russ.)
  • AOAC Association Official Analytical Chemists. The Official Methods of Analysis of AOAC International; 22 Vitamin C; AOAC: Rockville, MD, USA, 2012.
  • Golubkina N.A., Kekina H.G., Molchanova A.V., Antoshkina M.S., Nadezhkin S.M., Soldatenko A.V. Plant Antioxidants and Methods of their Determination; Infra-M: Moscow, Russia, 2021.
  • Giusti M.M., Wrolstad R.E. Current Protocols in Food Analytical Chemistry; F1.2.1–1.2.13; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001.
  • Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. 1987;(148):350–382. 10.1016 /0076-6879(87)48036-1.
  • Guide for the evaluation of quality and safety of food biologically active additives; Organic acids determination 2004; Moscow. Health Ministry of RF P 4.1.1672-03; p. 109–111.
  • Alfawaz M. Chemical composition of hummayd (Rumex vesicarius) grown in Saudi Arabia. J. Food Comp. Anal. 2006;19(6-7):552-555. doi: 10.1016/ j.jfca.2004.09.004.
  • Idris S., Iyaka Y.A., Dauda B.E.N., Ndamitso M.M. Nutrient Content of the Leaves of Rumex acetosa. Researcher. 2011;3(8):e31-36.
  • Santamaria, P. Nitrate in vegetables: toxicity content, intake and EC regulation. J. Sci. Food Agric. 2006;(86):10–17.
  • Tuazon-Nartea J., Savage G. Investigation of Oxalate Levels in Sorrel Plant Parts and Sorrel-Based Products. Food and Nutrition Sciences. 2013;4(8):35199. doi:10.4236/fns.2013.48109.
  • Noonen S.C., Savage G.P. Oxalate content of foods and its effect on humans. Asia Pacific J.Clin.Nutr. 1999;8(1):64-74.
  • Enaru B., Drețcanu G., Pop T.D., Stǎnilǎ A., Diaconeasa Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants (Basel). 2021;10(12):1967. doi: 10.3390/antiox10121967.
  • Bondonno C.P., Dalgaard F., Blekkenhorst L.C., Murray K., Lewis J.R., Croft K.D., Kyrø C., Torp-Pedersen C., Gislason G., Tjønneland A., Overvad K., Bondonno N.P., Hodgson J.M. Vegetable nitrate intake, blood pressure and incident cardiovascular disease: Danish Diet, Cancer, and Health Study. Eur J Epidemiol. 2021;36(8):813-825. doi: 10.1007/s10654-021-00747-3.
Статья научная